【題目】劉老師是一位經(jīng)驗豐富的高三理科班班主任,經(jīng)長期研究,他發(fā)現(xiàn)高中理科班的學生的數(shù)學成績(總分150分)與理綜成績(物理、化學與生物的綜合,總分300分)具有較強的線性相關性,以下是劉老師隨機選取的八名學生在高考中的數(shù)學得分x與理綜得分y(如下表):
學生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學分數(shù)x | 52 | 64 | 87 | 96 | 105 | 123 | 132 | 141 |
理綜分數(shù)y | 112 | 132 | 177 | 190 | 218 | 239 | 257 | 275 |
參考數(shù)據(jù)及公式:
.
(1)求出y關于x的線性回歸方程;
(2)若小汪高考數(shù)學110分,請你預測他理綜得分約為多少分?(精確到整數(shù)位);
(3)小金同學的文科一般,語文與英語一起能穩(wěn)定在215分左右.如果他的目標是在
高考總分沖擊600分,請你幫他估算他的數(shù)學與理綜大約分別至少需要拿到多少分?(精確到整數(shù)位).
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線
的右頂點到其一條漸近線的距離等于
,拋物線
的焦點與雙曲線
的右焦點重合,則拋物線
上的動點
到直線
和
的距離之和的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以邊長為4的等比三角形
的頂點
以及
邊的中點
為左、右焦點的橢圓過
兩點.
(1)求該橢圓的標準方程;
(2)過點
且
軸不垂直的直線
交橢圓于
兩點,求證直線
與
的交點在一條直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角梯形PBCD中,
,
,
,A為PD的中點,如圖.將△PAB沿AB折到△SAB的位置,使SB⊥BC,點E在SD上,且
,如圖.
![]()
(Ⅰ)求證:SA⊥平面ABCD;
(Ⅱ)求二面角E﹣AC﹣D的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的離心率為
,橢圓短軸的一個端點與兩個焦點構成的三角形的面積為
.
(1)求橢圓
的方程式;
(2)已知動直線
與橢圓
相交于
兩點.
①若線段
中點的橫坐標為
,求斜率
的值;
②已知點
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校隨機抽取部分新生調(diào)查其上學路上所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學路上所需時間的范圍是
,樣本數(shù)據(jù)分組為
,
,
,
,
.
![]()
(1)求直方圖中
的值;
(2)如果上學路上所需時間不少于40分鐘的學生可申請在學校住宿,請估計學校1000名新生中有多少名學生可以申請住宿.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ax2-a-lnx,其中a∈R.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)當
時,
恒成立,求a的取值范圍.(其中,e=2.718…為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的離心率為
,以橢圓的一個短軸端點及兩個焦點構成的三角形的面積為
,圓C方程為
.
(1)求橢圓及圓C的方程;
(2)過原點O作直線l與圓C交于A,B兩點,若
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
:
的左、右焦點分別為
,
,點
在橢圓
上.
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)是否存在斜率為2的直線
,使得當直線
與橢圓
有兩個不同交點
、
時,能在直線
上找到一點
,在橢圓
上找到一點
,滿足
?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com