【題目】如圖,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC=
AA1 , D是棱AA1的中點,DC1⊥BD. ![]()
(1)證明:DC1⊥面BCD;
(2)設(shè)AA1=2,求點B1到平面BDC1的距離.
【答案】
(1)證明:由題設(shè)知,三棱柱的側(cè)面為矩形.
由于D是棱AA1的中點,故DC=DC1.
又AC=
AA1,可得DC2+DC12=CC12,所以△C1DC是直角三角形,
∴C1D⊥DC.
而DC1⊥BD,DC∩BD=D,
所以DC1⊥面BCD
(2)解:由(1)知BC⊥DC1,且BC⊥CC1,則BC⊥平面ACC1A1,所以CA,CB,CC1兩兩垂直.
以C為坐標(biāo)原點,
的方向為x軸的正方向,建立如圖所示的空間直角坐標(biāo)系C﹣xyz.
由題意知B(0,1,0),D(1,0,1),C1(0,0,2),B1(0,1,2),
P(
,
,2),
則
=(1,﹣1,1),
=(﹣1,0,1),
=(﹣
,﹣
,0),
=(0,﹣1,0)
設(shè)
=(x,y,z)是平面BDC1的法向量,則 ![]()
可取
=(1,2,1).
設(shè)點B1到平面BDC1的距離為d,則d=|
|=
.
![]()
【解析】(1)在矩形ACC1A1中,利用勾股定理證明C1D⊥DC,由DC1⊥BD,DC∩BD=D能證明DC1⊥平面BDC;(2)建立空間直角坐標(biāo)系,求出平面BDC1的法向量,即可求點B1到平面BDC1的距離.
【考點精析】本題主要考查了直線與平面垂直的判定的相關(guān)知識點,需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=
,anbn+1+bn+1=nbn .
(Ⅰ)求{an}的通項公式;
(Ⅱ)求{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x﹣1),g(x)=loga(3﹣x)(a>0且a≠1)
(1)求函數(shù)h(x)=f(x)﹣g(x)的定義域;
(2)利用對數(shù)函數(shù)的單調(diào)性,討論不等式f(x)≥g(x)中x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log
(3x2﹣ax+5)在[﹣1,+∞)上單調(diào)遞減,則實數(shù)a的取值范圍是( )
A.[﹣8,﹣6]
B.(﹣8,﹣6]
C.(﹣∞,﹣8)∪(﹣6,+∞)
D.(﹣∞,﹣6]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共12分)
已知函數(shù)
,
(
為自然對數(shù)的底數(shù)).
(Ⅰ)討論
的單調(diào)性;
(Ⅱ)當(dāng)
時,不等式
恒成立,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1 , F2為橢圓C:
(a>b>0)的左、右焦點,M為橢圓C的上頂點,且|MF1|=2,右焦點與右頂點的距離為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l與橢圓C相交于A,B兩點,且直線OA,OB的斜率kOA , kOB滿足kOAkOB=﹣
,求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點
,定直線
,動點
到點
的距離與到直線
的距離之比等于
.
(1)求動點
的軌跡
的方程;
(2)設(shè)軌跡
與
軸負半軸交于點
,過點
作不與
軸重合的直線交軌跡
于兩點
,直線
分別交直線
于點
.試問:在
軸上是否存在定點
,使得
?若存在,求出定點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+
(a,b∈R)在點(1,f(1))處的切線方程為x﹣2y=0.
(1)求a,b的值;
(2)當(dāng)x>1時,f(x)﹣kx<0恒成立,求實數(shù)k的取值范圍;
(3)證明:當(dāng)n∈N* , 且n≥2時,
+
+
+…+
>
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com