【題目】定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),若對任意實數(shù)x,有f(x)>f'(x),且f(x)+2017為奇函數(shù),則不等式f(x)+2017ex<0的解集是( )
A.(﹣∞,0)
B.(0,+∞)
C.![]()
D.![]()
【答案】B
【解析】解:設(shè)2017g(x)=
,由f(x)>f′(x), 得:g′(x)=
<0,
故函數(shù)g(x)在R遞減,
由f(x)+2017為奇函數(shù),得f(0)=﹣2017,
∴g(0)=﹣1,
∵f(x)+2017ex<0,∴
<﹣2017,即g(x)<g(0),
結(jié)合函數(shù)的單調(diào)性得:x>0,
故不等式f(x)+2017ex<0的解集是(0,+∞).
故選B.
【考點精析】通過靈活運用函數(shù)奇偶性的性質(zhì)和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇;一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間
內(nèi),(1)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞增;(2)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞減即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,x∈(0,+∞),其導(dǎo)函數(shù)為f′(x),現(xiàn)有如下命題:
①對x1∈(0,+∞),x2∈(0,+∞),使得x2f(x1)>x1f(x2);
②對x1∈(0,+∞),對x2∈(0,+∞)且x1≠x2 , 使得f(x1)﹣f(x2)<x2﹣x1;
③當(dāng)a>3時,對x∈(0,+∞),不等式f(a+x)<f(a)ex恒成立;
④當(dāng)a>3時,對x∈(3,+∞),且x≠a時,不等式f(x)>f(a)+f′(a)(x﹣a)恒成立;其中真命題的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:存在向量
,
,使得
=|
||
|,命題q:對任意的向量
,
,
,若
=
,則
=
.則下列判斷正確的是( )
A.命題p∨q是假命題
B.命題p∧q是真命題
C.命題p∨(¬q)是假命題
D.命題p∧(¬q)是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
為實數(shù),函數(shù)
的導(dǎo)函數(shù)為
,且
是偶函數(shù), 則曲線:
在點
處的切線方程為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為
,以直角坐標(biāo)系原點為極點,
軸正半軸為極軸建立極坐標(biāo)系。
(1)求曲線C的極坐標(biāo)方程;
(2)若直線
的極坐標(biāo)方程為
,求直線
被曲線C截得的弦長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)G(x)=xlnx+(1﹣x)ln(1﹣x).
(1)求G(x)的最小值:
(2)記G(x)的最小值為e,已知函數(shù)f(x)=2aex+1+
﹣2(a+1)(a>0),若對于任意的x∈(0,+∞),恒有f(x)≥0成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,兩焦點之間的距離為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右頂點作直線交拋物線y2=4x于A,B兩點,求證:OA⊥OB(O為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在棱長為2的正方體ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E,F(xiàn)分別是CC1 , AD的中點,那么異面直線OE和FD1所成角的余弦值等于 . ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b∈(0,+∞),且2a4b=2. (Ⅰ)求
的最小值;
(Ⅱ)若存在a,b∈(0,+∞),使得不等式
成立,求實數(shù)x的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com