【題目】大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵,研究鮭魚的科學(xué)家發(fā)現(xiàn)鮭魚的游速
(單位:
)與其耗氧量單位數(shù)
之間的關(guān)系可以表示為函數(shù)
,其中
為常數(shù),已知一條鮭魚在靜止時的耗氧量為100個單位;而當(dāng)它的游速為
時,其耗氧量為2700個單位.
(1)求出游速
與其耗氧量單位數(shù)
之間的函數(shù)解析式;
(2)求當(dāng)一條鮭魚的游速不高于
時,其耗氧量至多需要多少個單位?
【答案】(1)
,
;(2)24300
【解析】試題分析 :(1)由
,可得
,
.
(2)由題
,解得:
,故其耗氧量至多需要24300個單位.
試題解析:(1)由題意,得
,
解得:
,
.
∴游速
與其耗氧量單位數(shù)
之間的函數(shù)解析式為
.
(2)由題意,有
,即
,
∴![]()
由對數(shù)函數(shù)的單調(diào)性,有
,解得:
,
∴當(dāng)一條鮭魚的游速不高于
時,其耗氧量至多需要24300個單位.
點(diǎn)晴:解決函數(shù)模型應(yīng)用的解答題,還有以下幾點(diǎn)容易造成失分:①讀不懂實際背景,不能將實際問題轉(zhuǎn)化為函數(shù)模型.②對涉及的相關(guān)公式,記憶錯誤.③在求解的過程中計算錯誤.另外需要熟練掌握求解方程、不等式、函數(shù)最值的方法,才能快速正確地求解.含有絕對值的問題突破口在于分段去絕對值,分段后在各段討論最值的情況.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
存在兩個極值點(diǎn).
(Ⅰ)求實數(shù)a的取值范圍;
(Ⅱ)設(shè)x1和x2分別是f(x)的兩個極值點(diǎn)且x1<x2 , 證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈R,x+
≥2;命題q:x0∈
,使sin x0+cos x0=
,
則下列命題中為真命題的是( )
A.(
p)∧q
B.p∧(
q)
C.(
p)∧(
q)
D.p∧q
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱
中,底面
是邊長為2的正三角形,
是棱
的中點(diǎn),且
.![]()
(1)試在棱
上確定一點(diǎn)
,使
平面
;
(2)當(dāng)點(diǎn)
在棱
中點(diǎn)時,求直線
與平面
所成角的大小的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱
與四棱錐
的組合體中,已知
平面
,四邊形
是平行四邊形,
,
,
,
,設(shè)
是線段
中點(diǎn).
![]()
(1)求證:
平面
;
(2)證明:平面
平面
;
(3)求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將紅、黑、藍(lán)、白5張紙牌(其中白紙牌有2張)隨機(jī)分發(fā)給甲、乙、丙、丁4個人,每人至少分得1張,則下列兩個事件為互斥事件的是( )
A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”
B. 事件“甲分得1張紅牌”與事件“乙分得1張藍(lán)牌”
C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”
D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鮮奶店每天以每瓶3元的價格從牧場購進(jìn)若干瓶鮮牛奶,然后以每瓶7元的價格出售.如果當(dāng)天賣不完,剩下的鮮牛奶作垃圾處理.
(1)若鮮奶店一天購進(jìn)30瓶鮮牛奶,求當(dāng)天的利潤
(單位:元)關(guān)于當(dāng)天需求量
(單位:瓶,
)的函數(shù)解析式;
(2)鮮奶店記錄了100天鮮牛奶的日需求量(單位:瓶),繪制出如下的柱形圖(例如:日需求量為25瓶時,頻數(shù)為5);
![]()
(i)若該鮮奶店一天購進(jìn)30瓶鮮牛奶,求這100天的日利潤(單位:元)的平均數(shù);
(ii) 若該鮮奶店一天購進(jìn)30瓶鮮牛奶,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于100元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)
是菱形
所在平面外一點(diǎn),
,
是等邊三角形,
,
,
是
的中點(diǎn).
(Ⅰ)求證:
平面
;
(Ⅱ)求證:平面
平面
;
(Ⅲ)求直線
與平面
的所成角的大小.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某工廠開展群眾體育活動的情況,擬采用分層抽樣的方法從A,B,C三個區(qū)中抽取7個工廠進(jìn)行調(diào)查,已知A,B,C區(qū)中分別有18,27,18個工廠
(Ⅰ)求從A,B,C區(qū)中分別抽取的工廠個數(shù);
(Ⅱ)若從抽取的7個工廠中隨機(jī)抽取2個進(jìn)行調(diào)查結(jié)果的對比,求這2個工廠中至少有1個來自A區(qū)的概率。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com