【題目】已知橢圓
過(guò)點(diǎn)
,順次連接橢圓的四個(gè)頂點(diǎn)得到的四邊形的面積為
,點(diǎn)
.
(Ⅰ)求橢圓
的方程.
(Ⅱ)已知點(diǎn)
,是橢圓
上的兩點(diǎn).
(。┤
,且
為等邊三角形,求
的面積;
(ⅱ)若
,證明:
不可能為等邊三角形.
【答案】(I)
;(II)詳見(jiàn)解析.
【解析】試題分析:(Ⅰ)根據(jù)面積公式得到
,以及點(diǎn)在曲線上,代入得到
,以及
,求得
;(Ⅱ)(。└鶕(jù)等邊三角形的性質(zhì),可得直線
的傾斜角是
或
,這樣求得直線
的方程,聯(lián)立橢圓方程,得到點(diǎn)
的坐標(biāo),求得面積;(ⅱ)因?yàn)?/span>
,所以斜率存在,設(shè)直線
的方程是
,與橢圓方程聯(lián)立,得到根與系數(shù)的關(guān)系,并且表示線段
中點(diǎn)
的坐標(biāo),若是等邊三角形,則
,可求得
,不合題意.
試題解析:(Ⅰ)依題意,
,
,聯(lián)立兩式,解得
,
,故橢圓
的方程為
.
(Ⅱ)(。┯
且
為等邊三角形及橢圓的對(duì)稱(chēng)性可知,直線
和直線
與
軸的夾角為
,由
可得
.
即
或
,當(dāng)
時(shí),
的面積為
;
當(dāng)
時(shí),
的面積為
.
(ⅱ)因?yàn)?/span>
,故直線
斜率存在,設(shè)直線
,
中點(diǎn)為
,聯(lián)立
消去
得, ![]()
由
得到
,①
所以
,
,
所以
.
又
,若
為等邊三角形,則有
,
即
,即
,化簡(jiǎn)得
,②
由②得點(diǎn)
橫坐標(biāo)為
,不合題意.
故
不可能為等邊三角形.
(用點(diǎn)差法求
點(diǎn)坐標(biāo)也可)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)當(dāng)
時(shí),求證:過(guò)點(diǎn)
有三條直線與曲線
相切;
(Ⅱ)當(dāng)
時(shí),
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量
,向量
,函數(shù)f(x)=
.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上所有點(diǎn)向右平行移動(dòng)
個(gè)單位長(zhǎng)度,得函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間[0,π]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
,
,
,平面
底面
,
.
和
分別是
和
的中點(diǎn),求證:
![]()
(Ⅰ)
底面
;
(Ⅱ)
平面
;
(Ⅲ)平面
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有三支股票
,
,
,28位股民的持有情況如下:每位股民至少持有其中一支股票,在不持有
股票的人中,持有
股票的人數(shù)是持有
股票的人數(shù)的2倍.在持有
股票的人中,只持有
股票的人數(shù)比除了持有
股票外,同時(shí)還持有其它股票的人數(shù)多1.在只持有一支股票的人中,有一半持有
股票.則只持有
股票的股民人數(shù)是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
在
和
處取得極值,且
,曲線
在
處的切線與直線
垂直.
(Ⅰ)求
的解析式;
(Ⅱ)證明關(guān)于
的方程
至多只有兩個(gè)實(shí)數(shù)根(其中
是
的導(dǎo)函數(shù),
是自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實(shí)行二級(jí)階梯式水價(jià)計(jì)量辦法,具體如下:第一階梯,每戶居民月用水量不超過(guò)12噸,價(jià)格為4元/噸;第二階梯,每戶居民月用水量超過(guò)12噸,超過(guò)部分的價(jià)格為8元/噸.為了了解全市居民月用水量的分布情況,通過(guò)抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照
,
,…,
分成8組,制成了如圖1所示的頻率分布直方圖.
![]()
(圖1) (圖2)
(Ⅰ)求頻率分布直方圖中字母
的值,并求該組的頻率;
(Ⅱ)通過(guò)頻率分布直方圖,估計(jì)該市居民每月的用水量的中位數(shù)
的值(保留兩位小數(shù));
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(fèi)
(元)與月份
的散點(diǎn)圖,其擬合的線性回歸方程是
. 若張某2016年1~7月份水費(fèi)總支出為312元,試估計(jì)張某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m個(gè)正數(shù)a1 , a2 , …,am(m≥4,m∈N*)依次圍成一個(gè)圓圈.其中a1 , a2 , a3 , …ak﹣1 , ak(k<m,k∈N*)是公差為d的等差數(shù)列,而a1 , am , am﹣1 , …,ak+1 , ak是公比為2的等比數(shù)列.
(1)若a1=d=2,k=8,求數(shù)列a1 , a2 , …,am的所有項(xiàng)的和Sm;
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整數(shù)k,滿足a1+a2+…+ak﹣1+ak=3(ak+1+ak+2+…+am﹣1+am)?若存在,求出k值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點(diǎn),F在棱AC上,且AF=3FC
(1)求三棱錐D-ABC的體積
(2)求證:平面DAC⊥平面DEF;
(3)若M為DB中點(diǎn),N在棱AC上,且CN=
CA,求證:MN∥平面DEF
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com