【題目】三棱柱
,側(cè)棱與底面垂直,
,
分別是
的中點.
![]()
(1)求證:
平面
;
(2)求證:平面
平面
.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)欲證
平面
,根據(jù)直線與平面平行的判定定理可知只需證
與平面
內(nèi)一直線平行即可,而連接
,根據(jù)中位線定理可知
, 又
平面
滿足定理所需條件;(2)證明
,即可證明
平面
,從而證明平面
平面
.
試題解析:(1)連接
.在
中,∵
,
是
,
的中點,
∴
,又∵
平面
,∴
平面
.
(
)∵三棱柱
中,側(cè)棱與底面垂直,∴四邊形
是正方形,∴
,
∴
,連接
,
,則
≌
,∴
,
∵
是
的中點,∴
,∵
,∴
平面
,
∵
平面
,∴平面
平面
.
【方法點晴】本題主要考查線面平行的判定定理、平面與平面垂直的判定定理,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.
科目:高中數(shù)學 來源: 題型:
【題目】將一個半徑適當?shù)男∏蚍湃肴鐖D所示的容器自上方的入口處,小球自由下落,小氣在下落的過程中,將遇到黑色障礙物3次,最后落入A袋或B袋中,已知小球每次遇到障礙物時,向左、右兩邊下落的概率分別是
, ![]()
(1)分別求出小球落入A袋和B袋中的概率;
(2)在容器 入口處依次放入4個小球,記ξ為落入B袋中的小球個數(shù),求ξ的分布列和數(shù)學期望.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)圓上的點A(2,3)關(guān)于直線x+2y=0的對稱點仍在圓上,且與直線x﹣y+1=0相交的弦長為2
,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)對一切
,
恒成立,求實數(shù)
的取值范圍;
(3)證明:對一切
,都有
成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
是等差數(shù)列,滿足
,
,數(shù)列
滿足
,
,且
是等比數(shù)列.
(1)求數(shù)列
和
的通項公式;
(2)求數(shù)列
的前
項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的有_________.
①函數(shù)
的一個對稱中心為
;
②在
中,
是
的中點,則
;
③在
中,
是
的充要條件;
④定義
,已知
,則
的最大值為
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓
的右焦點為
,右頂點為
.已知
,其中
為原點,
為橢圓的離心率.
(1)求橢圓的方程及離心率
的值;
(2)設(shè)過點
的直線
與橢圓交于點
(
不在
軸上),垂直于
的直線與
交于點
,與
軸交于點
.若
,且
,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)X是一個離散型隨機變量,其分布列如圖,則q等于( )
x | ﹣1 | 0 | 1 |
P | 0.5 | 1﹣2q | q2 |
A.1
B.1± ![]()
C.1﹣ ![]()
D.1+ ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當
時,求
的極值;
(Ⅱ)當
時,討論
的單調(diào)性;
(Ⅲ)若對于任意的
都有
,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com