【題目】【2018安徽江南十校高三3月聯(lián)考】線段
為圓
:
的一條直徑,其端點(diǎn)
,
在拋物線
:
上,且
,
兩點(diǎn)到拋物線
焦點(diǎn)的距離之和為
.
(I)求直徑
所在的直線方程;
(II)過
點(diǎn)的直線
交拋物線
于
,
兩點(diǎn),拋物線
在
,
處的切線相交于
點(diǎn),求
面積的最小值.
【答案】(I)
.(II)
.
【解析】試題分析:
(1)設(shè)
,
,拋物線
的焦點(diǎn)為
,由題意可得
=
,∴
,
的方程為
.利用點(diǎn)差法可得
的直線方程為
.
(2)不妨記
,
,
,直線
的方程為
,聯(lián)立直線方程與拋物線方程,結(jié)合弦長公式可得
,結(jié)合點(diǎn)到直線距離公式可得點(diǎn)
到直線
的距離
,則
,則
的面積
的最小值
.
試題解析:
(1)設(shè)
,
,拋物線
的焦點(diǎn)為
,則
,
又
,故
,∴
,
于是
的方程為
.
,則
,
∴
的直線方程為
.
(2)不妨記
,
,
,直線
的方程為
,
聯(lián)立
得
,
則
,
,
又因?yàn)?/span>
,則
,
同理可得:
,
故
,
為一元二次方程
的兩根,
∴
,
點(diǎn)
到直線
的距離
,
,
∴
時(shí),
的面積
取得最小值
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
與橢圓
相交于
兩點(diǎn),與
軸,
軸分別相交于點(diǎn)
和點(diǎn)
,且
,點(diǎn)
是點(diǎn)
關(guān)于
軸的對稱點(diǎn),
的延長線交橢圓于點(diǎn)
,過點(diǎn)
分別做
軸的垂線,垂足分別為
.
(1) 若橢圓
的左、右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)
在橢圓
上,求橢圓
的方程;
(2)當(dāng)
時(shí),若點(diǎn)
平分線段
,求橢圓
的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,側(cè)棱
垂直于底面
,
,
,
為
的中點(diǎn),
平行于
,
平行于面
,
.
![]()
(1)求
的長;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱
的所有棱長均
,
為棱
(不包括端點(diǎn))上一動點(diǎn),
是
的中點(diǎn).
![]()
(Ⅰ)若
,求
的長;
(Ⅱ)當(dāng)
在棱
(不包括端點(diǎn))上運(yùn)動時(shí),求平面
與平面
的夾角的余弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,
底面
,
為直角梯形,
與
相交于點(diǎn)
,
,
,
,三棱錐
的體積為9.
![]()
(1)求
的值;
(2)過
點(diǎn)的平面
平行于平面
,
與棱
,
,
,
分別相交于點(diǎn)
,求截面
的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系
中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.已知直線
的參數(shù)方程是
(
是參數(shù)),圓
的極坐標(biāo)方程為
.
(1)求圓心
的直角坐標(biāo);
(2)由直線
上的點(diǎn)向圓
引切線,并切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在直角坐標(biāo)系
中,以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程為
.
(1)寫出直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)若點(diǎn)
的坐標(biāo)為
,直線
與曲線
交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(其中
為常數(shù)且
)在
處取得極值.
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(2)若
在
上的最大值為1,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評估設(shè)備
生產(chǎn)某種零件的性能,從設(shè)備
生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測量其直徑后,整理得到下表:
直徑/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計(jì) |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計(jì)算,樣本的平均值
,標(biāo)準(zhǔn)差
,以頻率值作為概率的估計(jì)值.
(1)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為
,并根據(jù)以下不等式進(jìn)行評判(
表示相應(yīng)事件的概率);
①
;
②
;
③![]()
評判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級為甲;僅滿足其中兩個(gè),則等級為乙;若僅滿足其中一個(gè),則等級為丙;若全部不滿足,則等級為丁,試判斷設(shè)備
的性能等級.
(2)將直徑小于等于
或直徑大于
的零件認(rèn)為是次品.
①從設(shè)備
的生產(chǎn)流水線上隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)
的數(shù)學(xué)期望
;
②從樣本中隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)
的數(shù)學(xué)期望
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com