如下圖,在△MNG中,已知NG=4.當(dāng)動點M滿足條件sinG-sinN=
sinM時,求動點M的軌跡方程.
![]()
|
解:以NG所在的直線為x軸,以線段NG的垂直平分線為y軸建立直角坐標(biāo)系. ∵sinG-sinN= ∴由正弦定理,得|MN|-|MG|= ∴由雙曲線的定義知,點M的軌跡是以N、G為焦點的雙曲線的右支(除去與x軸的交點). ∴2c=4,2a=2,即c=2,a=1. ∴b2=c2-a2=3. ∴動點M的軌跡方程為 規(guī)律總結(jié):求軌跡方程時,如果沒有直角坐標(biāo)系,應(yīng)先建立適當(dāng)?shù)闹苯亲鴺?biāo)系,動點M的軌跡是雙曲線的一支并且去掉一個點.這種情況一般在求得方程的后面給以說明,并把說明的內(nèi)容加上括號.本題求解先利用正弦定理實現(xiàn)邊角轉(zhuǎn)化,再利用雙曲線的定義求軌跡是解題的關(guān)鍵.這種滿足曲線的定義可直接寫出方程. |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com