解:(Ⅰ)求導(dǎo)函數(shù)

∵函數(shù)y=f(x)在x=2處有極值,
∴

∴m=

;
(Ⅱ) 由題意y=F′(x)=f(x)+xf′(x)=-

x
3+

mx
2+

x

=

=

mx
2-x+c
,即

令

,∴h′(x)=-x
2+4
令h′(x)=-x
2+4>0,可得-2<x<2;令h′(x)=-x
2+4<0,可得x<-2,或x>2;
∴函數(shù)的單調(diào)增區(qū)間為(-2,2),單調(diào)減區(qū)間為(-∞,-2),(2,+∞)
∴x=-2時(shí),函數(shù)取得極小值為

;x=2時(shí),函數(shù)取得極大值為

∴當(dāng)極小值大于0或極大值小于0,即

或

,即

或

時(shí),方程

有唯一解;
當(dāng)極小值或極大值等于0,即

時(shí),方程

有兩個(gè)解;
當(dāng)極小值小于0且極大值大于0,即

時(shí),方程

有三個(gè)解;
(Ⅲ)由(Ⅱ) 知F′(x)=

,∴F″(x)=-x
2+mx+3
令F″(x)>0,∴-x
2+mx+3>0,∴x
2-mx-3<0
要使存在實(shí)數(shù)m∈[-2,2],使得函數(shù)F(x)在(a,b)上為“凹函數(shù)”,則b-a取得最大時(shí),b,a是方程x
2-mx-3=0的根,∴b+a=m,ba=-3
∴(b-a)
2=m
2+12
∴b-a最大值為

.
分析:(Ⅰ)求導(dǎo)函數(shù),利用函數(shù)y=f(x)在x=2處有極值,可得

,從而可求實(shí)數(shù)m的值;
(Ⅱ) 由題意y=F′(x)=f(x)+xf′(x)=-

x
3+

mx
2+

x

=

=

mx
2-x+c
,即

,構(gòu)造函數(shù)

,確定函數(shù)的單調(diào)區(qū)間,從而可得函數(shù)的極值,進(jìn)而分類討論,即可得到方程y=F′(x)=g(x)的實(shí)數(shù)解的個(gè)數(shù);
(Ⅲ)由(Ⅱ) 知F′(x)=

,所以F″(x)=-x
2+mx+3,利用新定義,即可求得b-a最大值.
點(diǎn)評(píng):本題重點(diǎn)考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的極值,函數(shù)的單調(diào)性,考查方程解的討論,同時(shí)考查新定義,綜合性較強(qiáng).