欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.已知(1+i)(1+ai)=2,則實(shí)數(shù)a的值為-1.

分析 利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等即可得出.

解答 解:(1+i)(1+ai)=2,
∴1-a+(1+a)i=2,
∴1-a=2,1+a=0,
解得a=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某大學(xué)為調(diào)研學(xué)生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取了100人,每人分別對(duì)這兩家餐廳進(jìn)行評(píng)分,滿分均為60分.整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐廳分?jǐn)?shù)的頻率分布直方圖,和B餐廳分?jǐn)?shù)的頻數(shù)分布表:
B餐廳分?jǐn)?shù)頻數(shù)分布表
分?jǐn)?shù)區(qū)間頻數(shù)
[0,10)2
[10,20)3
[20,30)5
[30,40)15
[40,50)40
[50,60]35
(Ⅰ)在抽樣的100人中,求對(duì)A餐廳評(píng)分低于30的人數(shù);
(Ⅱ)從對(duì)B餐廳評(píng)分在[0,20)范圍內(nèi)的人中隨機(jī)選出2人,求2人中恰有1人評(píng)分在[0,10)范圍內(nèi)的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會(huì)選擇哪一家?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.對(duì)于數(shù)列{an},定義Tn=a1a2+a2a3+…+anan+1,n∈N*
(1)若an=n,是否存在k∈N*,使得Tk=2017?請(qǐng)說(shuō)明理由;
(2)若a1=3,${T_n}={6^n}-1$,求數(shù)列{an}的通項(xiàng)公式;
(3)令${b_n}=\left\{\begin{array}{l}{T_2}-2{T_1},\begin{array}{l}{\;}{\;}{n=1}\end{array}\\{T_{n+1}}+{T_{n-1}}-2{T_n}\begin{array}{l}{\;},{n≥2,n∈{N^*}}\end{array}\end{array}\right.$,求證:“{an}為等差數(shù)列”的充要條件是“{an}的前4項(xiàng)為等差數(shù)列,且{bn}為等差數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{{b{\;}^2}}$=1(a>0,b>0)的左、右兩焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),橢圓上有一點(diǎn)A與兩焦點(diǎn)的連線構(gòu)成的△AF1F2中,滿足∠AF1F2=$\frac{π}{12},∠A{F_2}{F_1}=\frac{7π}{12}$.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)B,C,D是橢圓上不同于橢圓頂點(diǎn)的三點(diǎn),點(diǎn)B與點(diǎn)D關(guān)于原點(diǎn)O對(duì)稱,設(shè)直線BC,CD,OB,OC的斜率分別為k1,k2,k3,k4,且k1•k2=k3•k4,求OB2+OC2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)y=cosx-cos2x,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=2$\sqrt{3}sin(wx+\frac{π}{6})coswx$(0<w<2),且f(x)的圖象過(guò)點(diǎn)$(\frac{5π}{12},\frac{{\sqrt{3}}}{2})$.
(1)求w的值及函數(shù)f(x)的最小正周期;
(2)將y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)的圖象,已知$g(\frac{α}{2})=\frac{{5\sqrt{3}}}{6}$,求$cos(2α-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,O為坐標(biāo)原點(diǎn),A為右頂點(diǎn),P為雙曲線左支上一點(diǎn),若$\frac{{{{|{P{F_2}}|}^2}}}{{|{P{F_1}}|-|{OA}|}}$存在最小值為12a,則雙曲線一三象限的漸近線傾斜角的余弦值的最小值是( 。
A.$\frac{1}{5}$B.$\frac{1}{2}$C.$\frac{{2\sqrt{6}}}{5}$D.$\frac{{\sqrt{3}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知點(diǎn)O是△ABC的內(nèi)心,∠BAC=60°,BC=1,則△BOC面積的最大值為$\frac{\sqrt{3}}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{{{n^2}+3n}}{2}$,正項(xiàng)等比數(shù)列{bn}中,b1+b3=$\frac{20}{3}$,b2+b4=$\frac{20}{9}$.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若cn是an與bn+1的等比中項(xiàng),求數(shù)列{cn2}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案