欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開發(fā)了一款應(yīng)用軟件,為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng),這款軟件的激活碼為下面數(shù)學(xué)問(wèn)題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20,接下來(lái)的兩項(xiàng)是20,21,在接下來(lái)的三項(xiàng)式26,21,22,依此類推,求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是( 。
A.110B.220C.330D.440

分析 由題意求得數(shù)列的每一項(xiàng),及前n項(xiàng)和Sn=2n+1-2-n,及項(xiàng)數(shù),由題意可知:2n+1為2的整數(shù)冪.只需將-2-n消去即可,分別分別即可求得N的值

解答 由題意可知:$\underset{\underbrace{{2}^{0}}}{第一項(xiàng)}$,$\underset{\underbrace{{2}^{0},{2}^{1}}}{第二項(xiàng)}$,$\underset{\underbrace{{2}^{0},{2}^{1},{2}^{2}}}{第三項(xiàng)}$,…$\underset{\underbrace{{2}^{0},{2}^{1},{2}^{2}…,{2}^{n-1}}}{第n項(xiàng)}$,
根據(jù)等比數(shù)列前n項(xiàng)和公式,求得每項(xiàng)和分別為:21-1,22-1,23-1,…,2n-1,
每項(xiàng)含有的項(xiàng)數(shù)為:1,2,3,…,n,
總共的項(xiàng)數(shù)為N=1+2+3+…+n=$\frac{n(n+1)}{2}$,
所有項(xiàng)數(shù)的和為Sn:21-1+22-1+23-1+…+2n-1=(21+22+23+…+2n)-n=$\frac{2({2}^{n}-1)}{2-1}$-n=2n+1-2-n,
由題意可知:2n+1為2的整數(shù)冪.只需將-2-n消去即可,
則①1+2+(-2-n)=0,解得:n=1,總共有$\frac{(1+1)×1}{2}$+2=3,不滿足N>100,
②1+2+4+(-2-n)=0,解得:n=5,總共有$\frac{(1+5)×5}{2}$+3=18,不滿足N>100,
③1+2+4+8+(-2-n)=0,解得:n=13,總共有$\frac{(1+13)×13}{2}$+4=95,不滿足N>100,
④1+2+4+8+16+(-2-n)=0,解得:n=29,總共有$\frac{(1+29)×29}{2}$+5=440,滿足N>100,
∴該款軟件的激活碼440.
故選:D.

點(diǎn)評(píng) 本題考查數(shù)列的應(yīng)用,等差數(shù)列與等比數(shù)列的前n項(xiàng)和,考查計(jì)算能力,屬于難題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}中,a7=4,an+1=$\frac{3{a}_{n}+4}{7-{a}_{n}}$.
(1)試求a8和a6的值;用含有an+1的式子表示an;
(2)對(duì)于數(shù)列{an},是否存在自然數(shù)m,使得當(dāng)n≥m時(shí),an<2;當(dāng)n<m時(shí),an>2,若存在只證明;當(dāng)n≥m時(shí),an<2;若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在同一平面直角坐標(biāo)系中,畫出下列兩個(gè)函數(shù)的圖象,并指出它們的共同性質(zhì).
(1)y=4x;
(2)y=($\frac{1}{4}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={0,5,10},集合B={a+2,a2+1},且A∩B={5},則滿足條件的實(shí)數(shù)a的個(gè)數(shù)有(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知△ABC中,點(diǎn)A的坐標(biāo)為(1,5),邊BC所在直線方程為x-2y=0,邊BA所在直線2x-y+m=0過(guò)點(diǎn)(-1,1)
(Ⅰ)求點(diǎn)B的坐標(biāo)
(Ⅱ)求向量$\overrightarrow{BA}$在向量$\overrightarrow{BC}$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.近年來(lái),全國(guó)各地?cái)?shù)城市污染嚴(yán)重,為了提出有效的整治方案,將探究車流量與PM2.5的濃度的關(guān)系,現(xiàn)采集到某城市2017年4月份某星期星期一到星期日某一時(shí)間段車流量與PM2.5的數(shù)據(jù)如表:
時(shí)間星期一星期二星期三星期四星期五星期六星期七
車流量x(萬(wàn)輛)1234567
PM2.5的濃度y(微克/立方米)28303541495662
(1)求y關(guān)于x的線性回歸方程;
(2)①利用(1)所求的回歸方程,預(yù)測(cè)該市車流量為8萬(wàn)輛時(shí)PM2.5的濃度;
②規(guī)定:當(dāng)一天內(nèi)PM2.5的濃度平均值在(0,50]內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)PM2.5的濃度平均值在(50,100]內(nèi),空氣質(zhì)量等級(jí)為良.為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬(wàn)輛以內(nèi)?(結(jié)果以萬(wàn)輛為單位,保留整數(shù))
參考公式:回歸直線的方程是$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.
提示:$\sum_{i=1}^{7}{x}_{i}{y}_{i}$=1372.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若復(fù)數(shù)$\frac{m+2i}{1-i}$為實(shí)數(shù)(i為虛數(shù)單位),則實(shí)數(shù)m等于( 。
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,A,B,C的對(duì)邊分別是a,b,c,已知b+acosC=0,sinA=2sin(A+C),則$\frac{c}{a}$的值為( 。
A.$\frac{\sqrt{7}}{2}$B.$\frac{\sqrt{7}}{3}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)復(fù)數(shù)z滿足$\frac{1-i}{z}$=i+2,則 z=( 。
A.$\frac{1}{5}-\frac{3}{5}i$B.$-\frac{1}{5}+\frac{3}{5}i$C.-$\frac{3}{5}$+$\frac{3}{5}$iD.$\frac{3}{5}$-$\frac{3}{5}$i

查看答案和解析>>

同步練習(xí)冊(cè)答案