已知點(diǎn)A(1,0)及圓
,C為圓B上任意一點(diǎn),求AC垂直平分線與線段BC的交點(diǎn)P的軌跡方程。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:
(a>b>0)的離心率為
,且橢圓C上一點(diǎn)與兩個(gè)焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形的周長(zhǎng)為2
+2.
(1)求橢圓C的方程;
(2)過(guò)右焦點(diǎn)F2作直線l 與橢圓C交于A,B兩點(diǎn),設(shè)
,若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
:
(
)的右焦點(diǎn)
,右頂點(diǎn)
,且
.![]()
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若動(dòng)直線
:
與橢圓
有且只有一個(gè)交點(diǎn)
,且與直線
交于點(diǎn)
,問(wèn):是否存在一個(gè)定點(diǎn)
,使得
.若存在,求出點(diǎn)
坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
是橢圓
上兩點(diǎn),點(diǎn)
的坐標(biāo)為
.
(1)當(dāng)
關(guān)于點(diǎn)
對(duì)稱(chēng)時(shí),求證:
;
(2)當(dāng)直線
經(jīng)過(guò)點(diǎn)
時(shí),求證:
不可能為等邊三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的短半軸長(zhǎng)為
,動(dòng)點(diǎn)![]()
在直線
(
為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以
為直徑且被直線
截得的弦長(zhǎng)為
的圓的方程;
(3)設(shè)
是橢圓的右焦點(diǎn),過(guò)點(diǎn)
作
的垂線與以
為直徑的圓交于點(diǎn)
,
求證:線段
的長(zhǎng)為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線
上的任意一點(diǎn)
到該拋物線焦點(diǎn)的距離比該點(diǎn)到
軸的距離多1.![]()
(1)求
的值;
(2)如圖所示,過(guò)定點(diǎn)
(2,0)且互相垂直的兩條直線
、
分別與該拋物線分別交于
、
、
、
四點(diǎn).
(i)求四邊形
面積的最小值;
(ii)設(shè)線段
、
的中點(diǎn)分別為
、
兩點(diǎn),試問(wèn):直線
是否過(guò)定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
經(jīng)過(guò)點(diǎn)
,離心率為
.
(1)求橢圓
的方程;
(2)直線
與橢圓
交于
兩點(diǎn),點(diǎn)
是橢圓
的右頂點(diǎn).直線
與直線
分別與
軸交于點(diǎn)
,試問(wèn)以線段
為直徑的圓是否過(guò)
軸上的定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
,橢圓
以
的長(zhǎng)軸為短軸,且與
有相同的離心率.
(1)求橢圓
的方程;
(2)設(shè)
為坐標(biāo)原點(diǎn),點(diǎn)
、
分別在橢圓
和
上,
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸,焦點(diǎn)在直線2x-y-4=0上,求拋物線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com