設(shè)![]()
(1)求
的表達(dá)式,并判斷
的奇偶性;
(2)試證明:函數(shù)
的圖象上任意兩點的連線的斜率大于0;
(3)對于
,當(dāng)
時,恒有
求m的取值范圍。
(1)
奇函數(shù)
(2)當(dāng)
時,
![]()
當(dāng)
時,
綜上,
為增函數(shù),由增函數(shù)的定義知:
,
故任意兩點的連線斜率都大于零。(3)1<m![]()
【解析】
試題分析:(1)令
代入
中,得![]()
的定義域為R,關(guān)于原點對稱。![]()
![]()
(2)當(dāng)
時,
![]()
當(dāng)
時,
綜上,
為增函數(shù),由增函數(shù)的定義知:
,
故任意兩點的連線斜率都大于零。
(3)由(1)知
為奇函數(shù),由(2)知
在
為增函數(shù),故有![]()
考點:本題考查了函數(shù)的性質(zhì)的綜合運(yùn)用
點評:函數(shù)的單調(diào)性、奇偶性、周期性通常用于求解函數(shù)中的參數(shù)以及參數(shù)的范圍,利用函數(shù)的性質(zhì)往往能使問題簡化
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆云南省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
已知二次函數(shù)
的圖象經(jīng)過原點,且
。
(1)求
的表達(dá)式.
(2)設(shè)
,當(dāng)
時,
有最大值14,試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省高一第四學(xué)段模塊考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知定義在
上的函數(shù)
,最大值與最小值的差為4,相鄰兩個最低點之間距離為
,函數(shù)
圖象所有對稱中心都在
圖象的對稱軸上.
(1)求
的表達(dá)式;
(2)若
,求
的值;
(3)設(shè)
,
,
,若
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三第一次統(tǒng)練理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本大題9分)已知
是定義在R上的奇函數(shù),當(dāng)
時
,
(1)求
的表達(dá)式;
(2)設(shè)0<a<b,當(dāng)
時,
的值域為
,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2010-2011學(xué)年四川省高三四月月考文科數(shù)學(xué)卷 題型:解答題
已知函數(shù)
,設(shè)正項數(shù)列
的首項
,前n 項和
滿足
(
,且
)。
(1)求
的表達(dá)式;
(2)在平面直角坐標(biāo)系內(nèi),直線
的斜率為
,且
與曲線
相切,
又與y軸交于點
,當(dāng)
時,記
,若
,求數(shù)列
的前n 項和
。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com