【題目】某大型電器企業(yè),為了解組裝車間職工的生活情況,從中隨機抽取了
名職工進行測試,得到頻數(shù)分布表如下:
日組裝個數(shù) |
|
|
|
|
|
|
人數(shù) | 6 | 12 | 34 | 30 | 10 | 8 |
(1)現(xiàn)從參與測試的日組裝個數(shù)少于
的職工中任意選取
人,求至少有
人日組裝個數(shù)少于
的概率;
(2)由頻數(shù)分布表可以認為,此次測試得到的日組裝個數(shù)
服從正態(tài)分布
,
近似為這
人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表).
(
名職工,求日組裝個數(shù)超過
的職工人數(shù);
(ii)為鼓勵職工提高技能,企業(yè)決定對日組裝個數(shù)超過
的職工日工資增加
元,若在組裝車間所有職工中任意選取
人,求這三人增加的日工資總額的期望.
附:若隨機變量
服從正態(tài)分布
,則
,
,
.
【答案】(1)
(2)(i)
人(ii)75
【解析】
(1)利用對立事件公式結(jié)合古典概型求解(2)(i)先求平均數(shù)
,結(jié)合
公式求得
,再求人數(shù);(ii)先由正態(tài)分布得日組裝個數(shù)為
以上的概率為
.設(shè)三人中日組裝個數(shù)超過
個的人數(shù)為
,增加的日工資總額為
,得到
服從二項分布,由
求得期望
(1)設(shè)至少有
人日組裝個數(shù)少于
為事件
,則
,
(2)
(個)
又
,所以
,所以
,
,
所以
.
(i)
,
所以日組裝個數(shù)超過
個的人數(shù)為
(人)
(ii)由正態(tài)分布得,日組裝個數(shù)為
以上的概率為
.
設(shè)這三人中日組裝個數(shù)超過
個的人數(shù)為
,這三人增加的日工資總額為
,則
,
且
,所以
,所以
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.將一組數(shù)據(jù)中的每個數(shù)據(jù)都乘以同一個非零常數(shù)a后,方差也變?yōu)樵瓉淼?/span>a倍
B.設(shè)有一個回歸方程
,變量x增加1個單位時,y平均減少5個單位
C.線性相關(guān)系數(shù)r越大,兩個變量的線性相關(guān)性越強;反之,線性相關(guān)性越弱
D.在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),則P(ξ>1)=0.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,
分別為
的左、右頂點,
是
上異于
的動點,
面積的最大值為2.
(1)求橢圓
的方程;
(2)證明:直線
與直線
的斜率乘積為定值;
(3)設(shè)直線
,
分別交直線
于
兩點,以
為直徑作圓,當(dāng)圓的面積最小時,求該圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級的全體學(xué)生平均分成
個小組,且每個小組均有
名男生和多名女生.現(xiàn)從各個小組中隨機抽取一名同學(xué)參加社區(qū)服務(wù)活動,若抽取的
名學(xué)生中至少有一名男生的概率為
,則( )
A.該班級共有
名學(xué)生
B.第一小組的男生甲被抽去參加社區(qū)服務(wù)的概率為![]()
C.抽取的
名學(xué)生中男女生數(shù)量相同的概率是![]()
D.設(shè)抽取的
名學(xué)生中女生數(shù)量為
,則![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水稻是人類重要的糧食作物之一,耕種與食用的歷史都相當(dāng)悠久,日前我國南方農(nóng)戶在播種水稻時一般有直播、撒酒兩種方式.為比較在兩種不同的播種方式下水稻產(chǎn)量的區(qū)別,某市紅旗農(nóng)場于2019年選取了200塊農(nóng)田,分成兩組,每組100塊,進行試驗.其中第一組采用直播的方式進行播種,第二組采用撒播的方式進行播種.得到數(shù)據(jù)如下表:
產(chǎn)量(單位:斤) 播種方式 | [840,860) | [860,880) | [880,900) | [900,920) | [920,940) |
直播 | 4 | 8 | 18 | 39 | 31 |
散播 | 9 | 19 | 22 | 32 | 18 |
約定畝產(chǎn)超過900斤(含900斤)為“產(chǎn)量高”,否則為“產(chǎn)量低”
(1)請根據(jù)以上統(tǒng)計數(shù)據(jù)估計100塊直播農(nóng)田的平均產(chǎn)量(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)
(2)請根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有99%的把握認為“產(chǎn)量高”與“播種方式”有關(guān)?
產(chǎn)量高 | 產(chǎn)量低 | 合計 | |
直播 | |||
散播 | |||
合計 |
附
:
P(K2≥k0) | 0.10 | 0.010 | 0.001 |
k0 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
.現(xiàn)以極點
為原點,極軸為
軸的非負半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(1)求曲線
的直角坐標(biāo)系方程和直線
的普通方程;
(2)點
在曲線
上,且到直線
的距離為
,求符合條件的
點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線C1:y=
x2(p>0)的焦點與雙曲線C2:
-y2=1的右焦點的連線交C1于第一象限的點M.若C1在點M處的切線平行于C2的一條漸近線,則p=( ).
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com