給定橢圓
.稱圓心在原點(diǎn)O,半徑為
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為
,其短軸上的一個(gè)端點(diǎn)到F的距離為
.
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動點(diǎn),過動點(diǎn)P作直線
,使得
與橢圓C都只有一個(gè)交點(diǎn),試判斷
是否垂直?并說明理由.
(1)
; (2)
垂直.
解析試題分析:(1)由“橢圓C的一個(gè)焦點(diǎn)為
,其短軸上的一個(gè)端點(diǎn)到F的距離為
”知:
從而可得橢圓的標(biāo)準(zhǔn)方程和“準(zhǔn)圓”的方程;
(2)分兩種情況討論:①
當(dāng)中有一條直線斜率不存在;②直線
斜率都存在.
對于①可直接求出直線
的方程并判斷其是不互相垂直;
對于②設(shè)經(jīng)過準(zhǔn)圓上點(diǎn)
與橢圓只有一個(gè)公共點(diǎn)的直線為![]()
與橢圓方程聯(lián)立組成方程組
消去
得到關(guān)于
的方程:![]()
由
化簡整理得:![]()
![]()
![]()
而直線
的斜率正是方程的兩個(gè)根
,從而![]()
![]()
(1)![]()
橢圓方程為![]()
準(zhǔn)圓方程為![]()
(2)①
當(dāng)中有一條無斜率時(shí),不妨設(shè)
無斜率,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c4/2/hfbj33.png" style="vertical-align:middle;" />與橢圓只有一個(gè)共公點(diǎn),則其方程為![]()
當(dāng)
方程為
時(shí),此時(shí)
與準(zhǔn)圓交于點(diǎn)![]()
此時(shí)經(jīng)過點(diǎn)
(或
)且與橢圓只有一個(gè)公共瞇的直線是
(或
)
即
為
(或
),顯然直線
垂直;
同理可證
方程為
時(shí),直線
也垂直.
②當(dāng)
都有斜率時(shí),設(shè)點(diǎn)
其中![]()
設(shè)經(jīng)過點(diǎn)
與橢圓只有一個(gè)公共點(diǎn)的直線為![]()
則由
消去
,得![]()
由
化簡整理得:![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/35/d/qyozz1.png" style="vertical-align:middle;" />,所以有![]()
設(shè)
的斜率分別為
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/35/d/l9peu1.png" style="vertical-align:middle;" />與橢圓只有一個(gè)公共點(diǎn)
所以
滿足上述方程![]()
所以
,即
垂直,
綜合①②知,
垂直.
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程;2、直線與圓錐曲線的綜合問題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓
經(jīng)過點(diǎn)P(1.
),離心率e=
,直線l的方程為x=4.![]()
(1)求橢圓C的方程;
(2)AB是經(jīng)過右焦點(diǎn)F的任一弦(不經(jīng)過點(diǎn)P),設(shè)直線AB與直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為
.問:是否存在常數(shù)λ,使得
?若存在,求λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在原點(diǎn)
,焦點(diǎn)在
軸上,離心率為
,右焦點(diǎn)到右頂點(diǎn)的距離為
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線![]()
與橢圓
交于
兩點(diǎn),是否存在實(shí)數(shù)
,使
成立?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,其短軸兩端點(diǎn)為
.
(1)求橢圓
的方程;
(2)若
是橢圓
上關(guān)于
軸對稱的兩個(gè)不同點(diǎn),直線
與
軸分別交于點(diǎn)
.判斷以
為直徑的圓是否過點(diǎn)
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
左、右焦點(diǎn)分別為F1、F2,點(diǎn)P(2,
),點(diǎn)F2在線段PF1的中垂線上.
(1)求橢圓C的方程;
(2)設(shè)直線
與橢圓C交于M、N兩點(diǎn),直線F2M與F2N的斜率互為相反數(shù),求證:直線l過定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓
,經(jīng)過橢圓
的右焦點(diǎn)F及上頂點(diǎn)B,過圓外一點(diǎn)
傾斜角為
的直線
交橢圓于C,D兩點(diǎn),
(1)求橢圓的方程;
(2)若右焦點(diǎn)F在以線段CD為直徑的圓E的外部,求m的取值范圍.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線
的方程為
,過原點(diǎn)作斜率為
的直線和曲線
相交,另一個(gè)交點(diǎn)記為
,過
作斜率為
的直線與曲線
相交,另一個(gè)交點(diǎn)記為
,過
作斜率為
的直線與曲線
相交,另一個(gè)交點(diǎn)記為
,如此下去,一般地,過點(diǎn)
作斜率為
的直線與曲線
相交,另一個(gè)交點(diǎn)記為
,設(shè)點(diǎn)
(
).
(1)指出
,并求
與
的關(guān)系式(
);
(2)求
(
)的通項(xiàng)公式,并指出點(diǎn)列
,
, ,
, 向哪一點(diǎn)無限接近?說明理由;
(3)令
,數(shù)列
的前
項(xiàng)和為
,設(shè)
,求所有可能的乘積
的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,點(diǎn)
是橢圓
的一個(gè)頂點(diǎn),
的長軸是圓
的直徑,
、
是過點(diǎn)
且互相垂直的兩條直線,其中
交圓
于
、
兩點(diǎn),
交橢圓
于另一點(diǎn)
.![]()
(1)求橢圓
的方程;
(2)求
面積的最大值及取得最大值時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
,
為坐標(biāo)原點(diǎn),橢圓的右準(zhǔn)線與
軸的交點(diǎn)是
.
(1)點(diǎn)
在已知橢圓上,動點(diǎn)
滿足
,求動點(diǎn)
的軌跡方程;
(2)過橢圓右焦點(diǎn)
的直線與橢圓交于點(diǎn)
,求
的面積的最大值
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com