(本小題滿分12分)
如圖,在□ABCD中,∠DAB=60°,AB=2,AD="4." 將△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD. ![]()
(1)求證:AB⊥DE;
(2)求三棱錐E—ABD的側(cè)面積.
(1)先求出BD,利用勾股定理知AB⊥BD,再由面面垂直的性質(zhì)知AB⊥平面EBD,從而得證(2)S=8+2![]()
解析試題分析:(1)在△ABD 中,∵AB=2,AD=4,∠DAB=60°,
∴BD=
.
∴AB2+BD2=AD2,∴AB⊥BD.
又∵平面EBD⊥平面ABD,
平面EBD∩平面ABD=BD,AB
平面ABD,
∴AB⊥平面EBD. 又∵DE
平面EBC,∴AB⊥DE. ……5分
(2)由(1)知AB⊥BD.
∵CD∥AB ∴CD⊥BD,從而DE⊥BD
在Rt△DBE中, ∵DB=2
,DE=DC=AB=2,
∴S△DBE=
.……7分
又∵AB⊥平面EBD,BE
平面EBD,∴AB⊥BE.
∵BE=BC=AD=4,S△ABE=
AB·BE=4……9分
∵DE⊥BD,平面EBD⊥平面ABD,∴ED⊥平面ABD,
而AD
平面ABD,∴ED⊥AD,∴S△ADE=
AD·DE="4." ……11分
綜上,三棱錐E—ABD的側(cè)面積S=8+2
. ……12分
考點(diǎn):本小題主要考查空間中直線、平面間的位置關(guān)系的判斷和證明以及側(cè)面積的計(jì)算,考查學(xué)生的空間想象能力和推理論證能力以及運(yùn)算求解能力.
點(diǎn)評(píng):要證明空間中直線、平面間的位置關(guān)系要緊扣判定定理和性質(zhì)定理,定理中要求的條件缺一不可.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,
⊥平面
,
=90°,
,點(diǎn)
在
上,點(diǎn)E在BC上的射影為F,且
.![]()
(1)求證:
;
(2)若二面角
的大小為45°,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
如圖所示是一個(gè)半圓柱
與三棱柱
的組合體,其中,圓柱
的軸截面
是邊長(zhǎng)為4的正方形,![]()
為等腰直角三角形,
.![]()
試在給出的坐標(biāo)紙上畫(huà)出此組合體的三視圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,平面
⊥平面
,
是直角三角形,
,四邊形
是直角梯形,其中
,
,
,且
,
是
的中點(diǎn),
分別是
的中點(diǎn). ![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)如圖所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點(diǎn).![]()
(1)求
的長(zhǎng); (2)求cos<
>的值; (3)求證:A1B⊥C1M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(滿分12分)已知:正方體
中,棱長(zhǎng)
,
、
分別為
、
的中點(diǎn),
、
是
、
的中點(diǎn),![]()
(1)求證:
//平面
;
(2)求:
到平面
的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =
,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),且EF∥BC。設(shè)AE =
,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).![]()
(1)當(dāng)
=2時(shí),求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為
,求
的最大值;
(3)當(dāng)
取得最大值時(shí),求二面角D-BF-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,長(zhǎng)方體AC1中,AB=2,BC=AA1=1.E、F、G分別為棱DD1、D1C1、BC的中點(diǎn).![]()
(1)求證:平面
平面
;
(2)在底面A1D1上有一個(gè)靠近D1的四等分點(diǎn)H,求證: EH∥平面FGB1;
(3)求四面體EFGB1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
如圖,在直三棱柱
(側(cè)棱垂直于底面的棱柱)中,
,
,
,
,點(diǎn)
是
的中點(diǎn). ![]()
(Ⅰ) 求證:
∥平面
;
(Ⅱ)求AC1與平面CC1B1B所成的角.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com