欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
已知遞增等比數列{an}滿足:a2+a3+a4=28,且a3+2是a2和a4的等差中項,
(Ⅰ) 求數列{an}的通項公式;
(Ⅱ)若,Sn=b1+b2+…+bn,求使Sn+n•2n+1>62成立的正整數n的最小值.
【答案】分析:(I)由題意,得,由此能求出數列{an}的通項公式.
(Ⅱ),Sn=b1+b2+…+bn=-(1×2+2×22+…+n×2n),所以數列{bn}的前項和Sn=2n+1-2-n•2n+1,使Sn+n•2n+1>62成立的正整數n的最小值.
解答:解:(I)由題意,得,…(2分)
解得…(4分)
由于{an}是遞增數列,所以a1=2,q=2
即數列{an}的通項公式為an=2•2n-1=2n…(6分)
(Ⅱ)…(8分)
Sn=b1+b2+…+bn=-(1×2+2×22+…+n×2n)①
則2Sn=-(1×22+2×23+…+n×2n+1)②
②-①,得Sn=(2+22+…+2n)-n•2n+1=2n+1-2-n•2n+1
即數列{bn}的前項和Sn=2n+1-2-n•2n+1…(10分)
則Sn+n•2n+1=2n+1-2>62,所以n>5,
即n的最小值為6.…(12分)
點評:本題考查數列的性質的應用,解題時要認真審題,注意數列與不等式的綜合運用,合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知前n項和為Sn的等差數列{an}的公差不為零,且a2=3,又a4,a5,a8成等比數列.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若函數f(x)=Asin(3x+φ)(A>0,0<φ<π)在x=
π3
處取得最小值為S7,求函數f(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分14分)已知遞增數列滿足: ,且成等比數列。(I)求數列的通項公式;(II)若數列滿足: ,且。①證明數列是等比數列,并求數列的通項公式;②設,數列項和為, 。當時,試比較A與B的大小。

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分14分)已知遞增數列滿足:, ,且、、成等比數列。(I)求數列的通項公式;(II)若數列滿足: ,且。①證明數列是等比數列,并求數列的通項公式;②設,數列項和為, 。當時,試比較A與B的大小。

查看答案和解析>>

科目:高中數學 來源:2013-2014學年山東省文登市高三上學期期中統(tǒng)考理科數學試卷(解析版) 題型:選擇題

給出下列四個命題,其錯誤的是(     )

①已知是等比數列的公比,則“數列是遞增數列”是“”的既不充分也不必要條件;

②若定義在上的函數是奇函數,則對定義域內的任意必有;

③若存在正常數滿足,則的一個正周期為;

④函數圖像關于對稱.

A.②④                   B.④                    C.③                  D.③④

 

查看答案和解析>>

科目:高中數學 來源:2014屆云南省高二上學期期中考試理科數學試卷(解析版) 題型:選擇題

已知遞增等比數列滿足,則

A、1        B、8        C、     D、8或

 

查看答案和解析>>

同步練習冊答案