【題目】已知橢圓
的左右焦點(diǎn)分別為
,
是橢圓短軸的一個(gè)頂點(diǎn),并且
是面積為
的等腰直角三角形.
(1)求橢圓
的方程;
(2)設(shè)直線
與橢圓
相交于
兩點(diǎn),過
作與
軸垂直的直線
,已知點(diǎn)
,問直線
與
的交點(diǎn)的橫坐標(biāo)是否為定值?若是,則求出該定值;若不是,請(qǐng)說明理由.
【答案】(1)
;(2)
與
交點(diǎn)的橫坐標(biāo)為定值2,理由見解析
【解析】
(1)根據(jù)題中的條件,寫出橢圓的焦點(diǎn)的坐標(biāo),利用等腰直角三角形的條件,得出
的關(guān)系,從而求得其值,從而得出橢圓的方程,得到結(jié)果;
(2)設(shè)出直線與橢圓的兩個(gè)交點(diǎn)的坐標(biāo),聯(lián)立方程組,利用韋達(dá)定理得到
,寫出直線
的方程:
,令
,整理得出其橫坐標(biāo),從而證得其為定值,得到結(jié)果.
(1)由已知得
,設(shè)![]()
是面積為1的等腰直角三角形,![]()
橢圓
的方程為![]()
(2)設(shè)![]()
得![]()
![]()
直線
的方程:![]()
令![]()
![]()
![]()
![]()
與
交點(diǎn)的橫坐標(biāo)為定值2.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知S2=4,an+1=2Sn+1,n∈N*.
(1)求通項(xiàng)公式an;
(2)求數(shù)列{|an-n-2|}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:
![]()
(1)求頻率直方圖中a的值;
(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);
(3)從成績(jī)?cè)赱50,70)的學(xué)生中人選2人,求這2人的成績(jī)都在[60,70)中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)為
、
,
,若圓Q方程
,且圓心Q在橢圓上.
![]()
(1)求橢圓
的方程;
(2)已知直線
交橢圓
于A、B兩點(diǎn),過直線
上一動(dòng)點(diǎn)P作與
垂直的直線
交圓Q于C、D兩點(diǎn),M為弦CD中點(diǎn),
的面積是否為定值?若為定值,求出此定值;若不為定值,說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,O為坐標(biāo)原點(diǎn),以O為圓心的圓與直線
相切.
(1)求圓O的方程.
(2)直線
與圓O交于A,B兩點(diǎn),在圓O上是否存在一點(diǎn)M,使得四邊形
為菱形?若存在,求出此時(shí)直線l的斜率;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
過點(diǎn)
,且P到拋物線焦點(diǎn)的距離為2直線
過點(diǎn)
,且與拋物線相交于A,B兩點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)若點(diǎn)Q恰為線段AB的中點(diǎn),求直線
的方程;
(Ⅲ)過點(diǎn)
作直線MA,MB分別交拋物線于C,D兩點(diǎn),請(qǐng)問C,D,Q三點(diǎn)能否共線?若能,求出直線
的斜率
;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為常量
,圓心角為變量
的扇形
內(nèi)作一內(nèi)切圓
,再在扇形內(nèi)作一個(gè)與扇形兩半徑相切并與圓
外切的小圓
,設(shè)圓
的半徑為
,則
的半徑為
.
![]()
(1)求
的取值范圍;
(2)求圓
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,
.
(1)試判斷函數(shù)
在
上的單調(diào)性,并說明理由;
(2)若
是在區(qū)間
上的單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為
.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)P(0,-1),直線l與C的交點(diǎn)為M,N,線段MN的中點(diǎn)為Q,求
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com