欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.在△ABC中,若sinB、cos$\frac{A}{2}$、sinC成等比數(shù)列,則此三角形的形狀是等腰三角形.

分析 由題意和等比數(shù)列可得cos2$\frac{A}{2}$=sinBsinC,由三角函數(shù)公式化簡(jiǎn)可得B=C,可得等腰三角形.

解答 解:∵在△ABC中sinB、cos$\frac{A}{2}$、sinC成等比數(shù)列,
∴cos2$\frac{A}{2}$=sinBsinC,∴$\frac{1+cosA}{2}$=sinBsinC,
∴1+cosA=2sinBsinC,∴1-cos(B+C)=2sinBsinC,
∴1-cosBcosC+sinBsinC=2sinBsinC,
∴cosBcosC+sinBsinC=1,即cos(B-C)=1,
由三角形內(nèi)角的范圍可得B-C=0,即B=C,
∴△ABC為等腰三角形.
故答案為:等腰.

點(diǎn)評(píng) 本題考查三角形形狀的判斷,涉及等比數(shù)列和三角函數(shù)化簡(jiǎn),屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x≤3\\ y≤4\\ 4x+3y-12≥0\end{array}\right.$則z=x2+y2的取值范圍是(  )
A.[3,5]B.[9,25]C.$[\frac{12}{5},5]$D.$[\frac{144}{25},25]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,若sinC(cosA+cosB)=sinA+sinB,則△ABC的形狀是( 。
A.等腰三角形B.直角三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,直線3x+4y-5=0與圓x2+y2=4相交于A,B兩點(diǎn),求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在長方體ABCD-A1B1C1D1中,M為AC與BD的交點(diǎn),若$\overrightarrow{{A}_{1}{B}_{1}}$=$\overrightarrow{a}$,$\overrightarrow{{A}_{1}{D}_{1}}$=$\overrightarrow$,$\overrightarrow{{A}_{1}A}$=$\overrightarrow{c}$,則下列向量中與$\overrightarrow{{B}_{1}M}$相等的向量是( 。
A.-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$+$\overrightarrow{c}$B.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\overrightarrow{c}$C.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$+$\overrightarrow{c}$D.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)a,b,c均為正數(shù),且a+b+c=1.求證:
(1)ab+bc+ac≤$\frac{1}{3}$;
(2)$\frac{a^2}+\frac{b^2}{c}+\frac{c^2}{a}≥1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若不等式x2+ax+1≥0對(duì)一切x∈(0,$\frac{1}{3}$]都成立,則實(shí)數(shù)a的最小值為-$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知關(guān)于x的不等式ax2+bx+c>0的解集為{x|-2<x<3},則關(guān)于x的不等式cx2+bx+a<0的解集為{x|-$\frac{1}{2}$<x<$\frac{1}{3}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知曲線Г1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{5}cosθ}\\{y=-2+\sqrt{5}sinθ}\end{array}\right.$(θ為參數(shù)),直線Г2的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=-1+tsinα}\end{array}\right.$(t為參數(shù)).
(1)以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,求曲線Г1的極坐標(biāo)方程;
(2)若直線Г2和曲線Г1相交于A,B兩點(diǎn),且|AB|=4,求直線Г2的傾斜角..

查看答案和解析>>

同步練習(xí)冊(cè)答案