分析 根據(jù)題意,利用α的取值范圍,利用同角的三角函數(shù)關系和誘導公式,即可求出答案.
解答 解:∵0<α<$\frac{π}{2}$,∴-$\frac{π}{2}$<-α<0,
∴-$\frac{π}{4}$<$\frac{π}{4}$-α<$\frac{π}{4}$,
又sin($\frac{π}{4}$-α)=-$\frac{1}{3}$,
∴cos($\frac{π}{4}$-α)=$\sqrt{1{-sin}^{2}(\frac{π}{4}-α)}$=$\frac{2\sqrt{2}}{3}$,
∴sin($\frac{π}{4}$+α)=cos[$\frac{π}{2}$-($\frac{π}{4}$+α)]=cos($\frac{π}{4}$-α)=$\frac{2\sqrt{2}}{3}$.
故答案為:$\frac{2\sqrt{2}}{3}$.
點評 本題考查了同角的三角函數(shù)關系和誘導公式的應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $x-y+\sqrt{2}=0$ | B. | $x-y-\sqrt{2}=0$ | ||
| C. | $x-y+\sqrt{2}=0$或$x-y-\sqrt{2}=0$ | D. | x-y-2=0或x-y+2=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com