欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
設函數y=f(x),x∈R的導函數f′(x),且f(-x)=f(x),f′(x)<f(x),則下列不等式成立的是(  )
分析:通過分析給出的選項的特點,每一個選項中要比較的三個式子都涉及含有e的負指數冪及f(x),所以設想構造函數
g(x)=e-x•f(x),通過求其導函數,結合題目給出的f′(x)<f(x),得到函數g(x)的單調性,然后在函數g(x)的解析式中分別取x=0,1,-2,利用函數單調性即可得到結論.
解答:解:構造輔助函數,令g(x)=e-x•f(x),
則g′(x)=(e-x)′•f(x)+e-x•f′(x)
=-e-x•f(x)+e-x•f′(x)
=e-x(f′(x)-f(x)).
∵f′(x)<f(x),
∴g′(x)=e-x(f′(x)-f(x))<0,
∴函數令g(x)=e-x•f(x)為實數集上的減函數.
則g(-2)>g(0)>g(1).
∵g(0)=e0f(0)=f(0),
g(1)=e-1f(1),
g(-2)=e2f(-2),
又f(-x)=f(x),
∴g(-2)=e2f(2)
∴e-1f(1)<f(0)<e2f(2).
故選D.
點評:本題考查了利用導函數判斷原函數的單調性,考查了不等關系與不等式,訓練了函數構造法,解答此題的關鍵是結合選項的特點,正確構造出輔助函數,使抽象問題變得迎刃而解,此題是中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

13、設函數y=f(x)存在反函數y=f-1(x),且函數y=x-f(x)的圖象過點(1,2),則函數y=f-1(x)-x的圖象一定過點
(-1,2)

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)是定義在R+上的函數,并且滿足下面三個條件:①對任意正數x,y 都有f(xy)=f(x)+f(y);②當x>1時,f(x)<0;③f(3)=-1.
(1)求f(1),f(
19
)的值;
(2)證明:f(x)在R+上是減函數;
(3)如果不等式分f(x)+f(2-x)<2成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)的導函數是y=f′(x),稱εyx=f′(x)•
x
y
為函數f(x)的彈性函數.
函數f(x)=2e3x彈性函數為
3x
3x
;若函數f1(x)與f2(x)的彈性函數分別為εf 1xεf 2x,則y=f1(x)+f2(x)(f1(x)+f2(x)≠0)的彈性函數為
 f1(x)ef1x+f2(x)ef2x  
f1(x)+f2(x)
 f1(x)ef1x+f2(x)ef2x  
f1(x)+f2(x)

(用εf 1x,εf 2x,f1(x)與f2(x)表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)在(-∞,+∞)內有定義,對于給定的正數K,定義函數fK(x)=
f(x),f(x)≤k
k,f(x)>k
,取函數f(x)=2-x-e-x,若對任意的x∈(-∞,+∞),恒有fK(x)=f(x),則K的最小值為
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)在(-∞,+∞)內有定義.對于給定的正數K,定義函數fk(x)=
f(x),f(x)≥K
K,f(x)<K
,取函數f(x)=2+x+e-x.若對任意的x∈(+∞,-∞),恒有fk(x)=f(x),則( 。

查看答案和解析>>

同步練習冊答案