【題目】已知圓錐曲線
的方程為
.
(
)在所給坐標(biāo)系中畫出圓錐曲線
.
(
)圓錐曲線
的離心率
__________.
(
)如果頂點(diǎn)在原點(diǎn)的拋物線
與圓錐曲線
有一個(gè)公共焦點(diǎn)
,且過第一象限,則
(i)交點(diǎn)
的坐標(biāo)為__________.
(ii)拋物線
的方程為__________.
(iii)在圖中畫出拋物線
的準(zhǔn)線.
(
)已知矩形
各頂點(diǎn)都在圓錐曲線
上,則矩形
面積的最大值為__________.
![]()
【答案】(
)見解析(
)
(
)(i)
(ii)
(iii)見解析(4)面積最大值![]()
【解析】(
)將
變形為
,根據(jù)
在第一象限
的范圍內(nèi)算出幾個(gè)點(diǎn)的坐標(biāo)
,然后進(jìn)行描點(diǎn)作圖,再利用對(duì)稱性畫出整個(gè)橢圓
![]()
(2)∵![]()
∴![]()
∴![]()
∴![]()
∴圓錐曲線
的離心率是![]()
(3)(i)由(2)得橢圓的焦點(diǎn)在
軸上,且![]()
∵頂點(diǎn)在原點(diǎn)的拋物線
與圓錐曲線
有一個(gè)公共焦點(diǎn)
,且過第一象限
∴![]()
(ii)由(i)得拋物線的焦點(diǎn)為
,且過第一象限,所以拋物線的方程為![]()
(iii)由(ii)得拋物線的準(zhǔn)線方程為![]()
![]()
(
)∵圓錐曲線
為
,
,
,
,
∴離心率
,
公共焦點(diǎn)
,
對(duì)于拋物線
:
,∴
,
∴
方程為
,準(zhǔn)線為
,
設(shè)矩形上
點(diǎn)
,
∴
,
當(dāng)
時(shí),即
時(shí)
為面積最大值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是平行四邊形,
,側(cè)面
底面
,
,
,
分別為
的中點(diǎn),點(diǎn)
在線段
上.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)如果直線
與平面
所成的角和直線
與平面
所成的角相等,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)證明當(dāng)
時(shí),關(guān)于
的不等式
恒成立;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形
是直角梯形,
,
,
,
,又
,
,
,直線
與直線
所成的角為
.
![]()
(1)求證:平面
平面
;
(2)(文科)求三棱錐
的體積.
(理科)求二面角
平面角正切值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐
中,
和
是邊長為
的等邊三角形,
,
分別是
的中點(diǎn).
![]()
(Ⅰ)求證:
∥平面
;
(Ⅱ)求證:平面
⊥平面
;
(Ⅲ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形PDC所在的平面與長方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.點(diǎn)E是CD邊的中點(diǎn),點(diǎn)F,G分別在線段AB,BC上,且AF=2FB,CG=2GB.
![]()
(1)證明:PE⊥FG;
(2)求二面角PADC的正切值;
(3)求直線PA與直線FG所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,直線![]()
(1)若直線
與圓
相交于兩點(diǎn)
,弦長
等于
,求
的值;
(2)已知點(diǎn)
,點(diǎn)
為圓心,若在直線
上存在定點(diǎn)
(異于點(diǎn)
),滿足:對(duì)于圓
上任一點(diǎn)
,都有
為一常數(shù),試求所有滿足條件的點(diǎn)
的坐標(biāo)及改常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某基地蔬菜大棚采用水培、無土栽培方式種植各類蔬菜.過去50周的資料顯示,該地周光照量
(小時(shí))都在30小時(shí)以上,其中不足50小時(shí)的周數(shù)有5周,不低于50小時(shí)且不超過70小時(shí)的周數(shù)有35周,超過70小時(shí)的周數(shù)有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量
(百斤)與使用某種液體肥料
(千克)之間對(duì)應(yīng)數(shù)據(jù)為如圖所示的折線圖.
(1)依據(jù)數(shù)據(jù)的折線圖,是否可用線性回歸模型擬合
與
的關(guān)系?請(qǐng)計(jì)算相關(guān)系數(shù)
并加以說明(精確到0.01).(若
,則線性相關(guān)程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對(duì)光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運(yùn)行臺(tái)數(shù)受周光照量
限制,并有如下關(guān)系:
周光照量 |
|
|
|
光照控制儀最多可運(yùn)行臺(tái)數(shù) | 3 | 2 | 1 |
若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀周利潤為3000元;若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損1000元.若商家安裝了3臺(tái)光照控制儀,求商家在過去50周周總利潤的平均值.
![]()
附:相關(guān)系數(shù)公式
,參考數(shù)據(jù)
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體
的棱長為 1,
為
的中點(diǎn),
為線段
上的動(dòng)點(diǎn),過點(diǎn)A、P、Q的平面截該正方體所得的截面記為
.則下列命題正確的是__________(寫出所有正確命題的編號(hào)).
①當(dāng)
時(shí),
為四邊形;②當(dāng)
時(shí),
為等腰梯形;③當(dāng)
時(shí),
為六邊形;④當(dāng)
時(shí),
的面積為
.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com