(本小題共12分)
如圖,已知直線l與拋物線
相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),
定點(diǎn)B的坐標(biāo)為(2,0).![]()
(1)若動(dòng)點(diǎn)M滿足
,求點(diǎn)M的軌跡C;
(2)若過(guò)點(diǎn)B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點(diǎn)E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
(I)動(dòng)點(diǎn)M的軌跡C為以原點(diǎn)為中心,焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為
,短軸長(zhǎng)為2的橢圓 (II)(3-2
,1).
解析試題分析:(I)由
,
∴直線l的斜率為
故l的方程為
,∴點(diǎn)A坐標(biāo)為(1,0)
設(shè)
則
,
由
得 ![]()
整理,得
∴動(dòng)點(diǎn)M的軌跡C為以原點(diǎn)為中心,焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為
,短軸長(zhǎng)為2的橢圓
(II)由題意知直線l的斜率存在且不為零,設(shè)l方程為y=k(x-2)(k≠0)①
將①代入
,整理,得
,
由△>0得0<k2<
. 設(shè)E(x1,y1),F(x2,y2)
則
②
令
,由此可得![]()
由②知![]()
![]()
.
∴△OBE與△OBF面積之比的取值范圍是(3-2
,1).
考點(diǎn):本題考查了直線與拋物線的位置關(guān)系
點(diǎn)評(píng):對(duì)于直線與圓錐曲線的綜合問(wèn)題,往往要聯(lián)立方程,同時(shí)結(jié)合一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解;而對(duì)于最值問(wèn)題,則可將該表達(dá)式用直線斜率k表示,然后根據(jù)題意將其進(jìn)行化簡(jiǎn)結(jié)合表達(dá)式的形式選取最值的計(jì)算方式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在平面直角坐標(biāo)系
中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為
,右頂點(diǎn)為
,設(shè)點(diǎn)
.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若
是橢圓上的動(dòng)點(diǎn),求線段
中點(diǎn)
的軌跡方程;
(3)過(guò)原點(diǎn)
的直線交橢圓于點(diǎn)
,求
面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,一條經(jīng)過(guò)點(diǎn)
且方向向量為
的直線
交橢圓
于
兩點(diǎn),交
軸于
點(diǎn),且
.![]()
(1)求直線
的方程;
(2)求橢圓
長(zhǎng)軸長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知橢圓
的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為
,![]()
,點(diǎn)
在橢圓
上,過(guò)點(diǎn)
的直線
與拋物線
交于
兩點(diǎn),拋物線
在點(diǎn)
處的切線分別為
,且
與
交于點(diǎn)
.
(1) 求橢圓
的方程;
(2) 是否存在滿足
的點(diǎn)
? 若存在,指出這樣的點(diǎn)
有幾個(gè)(不必求出點(diǎn)
的坐標(biāo)); 若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的離心率為
,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為![]()
(1)求橢圓C的方程
(2)設(shè)直線與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為
,求
面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
(a>b>0)的離心率e=
,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為(-
,0).若
,求直線l的傾斜角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知圓
的圓心為原點(diǎn)
,且與直線
相切。![]()
(1)求圓
的方程;
(2)點(diǎn)
在直線
上,過(guò)
點(diǎn)引圓
的兩條切線
,切點(diǎn)為
,求證:直線
恒過(guò)定點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓E:
的焦點(diǎn)坐標(biāo)為
(
),點(diǎn)M(
,
)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)Q(1,0),過(guò)Q點(diǎn)引直線
與橢圓E交于
兩點(diǎn),求線段
中點(diǎn)
的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,拋物線
的頂點(diǎn)為坐標(biāo)原點(diǎn)
,焦點(diǎn)
在
軸上,準(zhǔn)線
與圓
相切.![]()
(Ⅰ)求拋物線
的方程;
(Ⅱ)若點(diǎn)
在拋物線
上,且
,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com