|
(1)求證:BF∥平面ACE;(2)求二面角B-AF-C的大;
(3)求點(diǎn)F到平面ACE的距離.
(Ⅰ) 見解析 (Ⅱ)
(Ⅲ)![]()
1)記AC與BD的交點(diǎn)為O,連接EO,則可證BF∥EO,又
面ACE,
面ACE,故BF∥平面ACE; (3分)
解:(2)過點(diǎn)O作OG⊥AF于點(diǎn)G,連接GB,則可證∠OGB為二面角B-AF-C的平面角.在Rt△FOA中,可求得OG=
,又OB=
,故
,
∴
,即二面角B-AF-C的大小為
; (8分)
|
平面ACE的距離,也等于點(diǎn)D到平面ACE
的距離,該距離就是Rt△EDO斜邊上的高,
即
. (12分)
(本題運(yùn)用向量法解答正確,請參照給分)
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆江西高安中學(xué)高二上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
如圖所示的幾何體是由以正三角形
為底面的直棱柱被平面
所截而得.
,
為
的中點(diǎn).
![]()
(1)當(dāng)
時,求平面
與平面
的夾角的余弦值;
(2)當(dāng)
為何值時,在棱
上存在點(diǎn)
,使
平面
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省八市高三3月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)如圖,在長方體
中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱
,為
中點(diǎn),
為
中點(diǎn),
為
上一個動點(diǎn).
![]()
(Ⅰ)確定
點(diǎn)的位置,使得
;
(Ⅱ)當(dāng)
時,求二面角
的平
面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西桂林中學(xué)高三7月月考試題理科數(shù)學(xué) 題型:解答題
(本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn).
![]()
⑴求異面直線PD與AE所成角的大。
⑵求證:EF⊥平面PBC ;
⑶求二面角F—PC—B的大小..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年湖南省招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題
(本題滿分12分)
如圖3,在圓錐
中,已知
的直徑
的中點(diǎn).
(I)證明:![]()
(II)求直線和平面
所成角的正弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年海南省高三五校聯(lián)考數(shù)學(xué)(文) 題型:解答題
(本題滿分12分)
如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點(diǎn),SA=SB=SC。
(1)求證:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com