分析 利用△AOB的面積為5,得出OA⊥OB,設(shè)出直線方程,利用圓心到直線的距離d=$\frac{|3k-4|}{\sqrt{{k}^{2}+1}}=\frac{\sqrt{2}}{2}•\sqrt{10}$,求出直線的斜率.
解答 解:圓O:x2+y2=10的圓心坐標為O(0,0),半徑為$\sqrt{10}$,
∵△AOB的面積為5,
∴$\frac{1}{2}×\sqrt{10}×\sqrt{10}×sin∠AOB$=5,
∴sin∠AOB=1,
∴∠AOB=90°,
∴OA⊥OB.
設(shè)過點P(-3,-4)的直線l的方程為y+4=k(x+3),即kx-y+3k-4=0,
圓心到直線的距離d=$\frac{|3k-4|}{\sqrt{{k}^{2}+1}}=\frac{\sqrt{2}}{2}•\sqrt{10}$,
∴k=$\frac{1}{2}$或$\frac{11}{2}$.
故答案為:$\frac{1}{2}$或$\frac{11}{2}$.
點評 本題考查直線與圓的位置關(guān)系,考查三角形面積的計算,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 0 | B. | $2\sqrt{2}$ | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 8 | B. | 12 | C. | 16 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{11}$ | B. | $\frac{1}{9}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | f(x)是奇函數(shù) | B. | f(x)的最小值是$-\frac{1}{2}$ | ||
| C. | f(x)的最大值是$\frac{5}{6}$ | D. | 當x>2003時,$f(x)>\frac{1}{2}$恒成立 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ($\frac{2}{3}$,2) | B. | ($\frac{10}{3}$,4) | C. | ($\frac{51}{16}$,4) | D. | (2,4) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com