如圖,橢圓
的離心率為
,
是其左右頂點(diǎn),
是橢圓上位于
軸兩側(cè)的點(diǎn)(點(diǎn)
在
軸上方),且四邊形
面積的最大值為4.![]()
(1)求橢圓方程;
(2)設(shè)直線
的斜率分別為
,若
,設(shè)△
與△
的面積分別為
,求
的最大值.
(1)
; (2)
的最大值為
.
解析試題分析:(1)由
2分,得
,所以橢圓方程為
; 4分
(2)設(shè)
,設(shè)直線
的方程為
,代入
得
, 5分
,
, 7分
,
,由
得
,
所以
,所以
, 8分
得
,得
,① 9分
,
, 10分
代入①得
,得
,或
(是增根,舍去), 11分
所以
12分
所以![]()
,當(dāng)
時(shí)取到, 14分
所以![]()
,所以
的最大值為
. ` 15分
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì),直線與橢圓的位置關(guān)系,三角形面積計(jì)算,最值的求法。
點(diǎn)評(píng):中檔題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題求橢圓標(biāo)準(zhǔn)方程時(shí),主要運(yùn)用了橢圓的幾何性質(zhì),建立了a,bac的方程組。(2)作為研究三角形面積問題,應(yīng)用韋達(dá)定理,建立了m的函數(shù)式,利用函數(shù)觀點(diǎn),求得面積之差的最大值,使問題得解。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在直角坐標(biāo)系
中,曲線
的參數(shù)方程為:
(
為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系
取相同的長(zhǎng)度單位,且以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸)中,直線
的極坐標(biāo)方程為:
.
(Ⅰ)寫出曲線
和直線
在直角坐標(biāo)系下的方程;
(II)設(shè)點(diǎn)
是曲線
上的一個(gè)動(dòng)點(diǎn),求它到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
、
是橢圓![]()
的左、右焦點(diǎn),且離心率
,點(diǎn)
為橢圓上的一個(gè)動(dòng)點(diǎn),
的內(nèi)切圓面積的最大值為
.
(1) 求橢圓的方程;
(2) 若
是橢圓上不重合的四個(gè)點(diǎn),滿足向量
與
共線,
與
共
線,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
(a>b>0)拋物線![]()
,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:![]()
| 4 | 1 | |||
| 2 | 4 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓
,
是長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)
滿足
,聯(lián)結(jié)
,交橢圓于點(diǎn)
. ![]()
(1)當(dāng)
,
時(shí),設(shè)
,求
的值;
(2)若
為常數(shù),探究
滿足的條件?并說明理由;
(3)直接寫出
為常數(shù)的一個(gè)不同于(2)結(jié)論類型的幾何條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上.若橢圓上的點(diǎn)
到焦點(diǎn)
、
的距離之和等于4.
(1)寫出橢圓
的方程和焦點(diǎn)坐標(biāo).
(2)過點(diǎn)
的直線與橢圓交于兩點(diǎn)
、
,當(dāng)
的面積取得最大值時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
的頂點(diǎn)為原點(diǎn),其焦點(diǎn)
到直線
的距離為
.設(shè)
為直線
上的點(diǎn),過點(diǎn)
作拋物線
的兩條切線
,其中
為切點(diǎn).
(1) 求拋物線
的方程;
(2) 當(dāng)點(diǎn)
為直線
上的定點(diǎn)時(shí),求直線
的方程;
(3) 當(dāng)點(diǎn)
在直線
上移動(dòng)時(shí),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是橢圓
的左、右焦點(diǎn),
是橢圓上位于第一象限內(nèi)的一點(diǎn),點(diǎn)
也在橢圓上,且滿足
(
是坐標(biāo)原點(diǎn)),
,若橢圓的離心率為
.
(1)若
的面積等于
,求橢圓的方程;
(2)設(shè)直線
與(1)中的橢圓相交于不同的兩點(diǎn)
,已知點(diǎn)
的坐標(biāo)為(
),點(diǎn)
在線段
的垂直平分線上,且
,求
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com