函數(shù)
,其中
為實(shí)常數(shù)。
(1)討論
的單調(diào)性;
(2)不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍;
(3)若
,設(shè)
,![]()
。是否存在實(shí)常數(shù)
,既使
又使
對(duì)一切
恒成立?若存在,試找出
的一個(gè)值,并證明;若不存在,說明理由.
(1)當(dāng)
時(shí),增區(qū)間為
,無減區(qū)間;當(dāng)
時(shí),增區(qū)間為
,減區(qū)間為
;(2)
;(3)存在,如
等,證明見詳解.
解析試題分析:(1)首先求導(dǎo)函數(shù)
,然后對(duì)參數(shù)
進(jìn)行分類討論
的單調(diào)性;(2)根據(jù)函數(shù)的解析式可將問題轉(zhuǎn)化為
的最大值,再利用導(dǎo)數(shù)研究函數(shù)單調(diào)性來確定其最值;(3)假設(shè)存在,將問題轉(zhuǎn)化為證明:
及
成立,然后可考慮綜合法與分析法進(jìn)行證明.
試題解析:(1)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3f/5/13uog4.png" style="vertical-align:middle;" />,
①當(dāng)
時(shí),
,![]()
在定義域
上單增;
②當(dāng)
時(shí),當(dāng)
時(shí),
,
單增;當(dāng)
時(shí),
,
單減.
增區(qū)間:
,減區(qū)間:
.
綜上可知:當(dāng)
時(shí),增區(qū)間
,無減區(qū)間;當(dāng)
時(shí),增區(qū)間:
,減區(qū)間:
.
(2)
對(duì)任意
恒成立
,令
,
,![]()
在
上單增,![]()
,![]()
,故
的取值范圍為
.
(3)存在,如
等.下面證明:![]()
及
成立.
①先證
,注意
,
這只要證
(*)即可,
容易證明
對(duì)
恒成立(這里證略),取
即可得上式成立.
讓
分別代入(*)式再相加即證:
,
于是
.
②再證
,
法一:![]()
![]()
![]()
,
只須證
,構(gòu)造證明函數(shù)不等式:
,
令
,
,
當(dāng)
時(shí),
在
上單調(diào)遞減,
又![]()
當(dāng)
時(shí),恒有
,即
恒成立.
,取
,則有
,
讓
分別代入上式再相加即證:
,
即證![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax2-ln x,x∈(0,e],其中e是自然對(duì)數(shù)的底數(shù),a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值是3?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某村莊擬修建一個(gè)無蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時(shí)該蓄水池的體積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
.
(1)確定y=f(x)在(0,+∞)上的單調(diào)性;
(2)若a>0,函數(shù)h(x)=xf(x)-x-ax2在(0,2)上有極值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
x3+
x2-ax-a,x∈R,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=aln x=
(a為常數(shù)).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+2y-5=0垂直,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)x≥1時(shí),f(x)≤2x-3恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
ax3-
x2+cx+d(a,c,d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若h(x)=
x2-bx+
-
,解不等式f′(x)+h(x)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
,函數(shù)
.
(1)當(dāng)
時(shí),求
在
內(nèi)的極大值;
(2)設(shè)函數(shù)
,當(dāng)
有兩個(gè)極值點(diǎn)
時(shí),總有
,求實(shí)數(shù)
的值.(其中
是
的導(dǎo)函數(shù).)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com