(本題滿分15分)
已知實(shí)數(shù)
滿足
且
,設(shè)函數(shù)![]()
(Ⅰ) 當(dāng)
時(shí),求f (x)的極小值;
(Ⅱ) 若函數(shù)
(
)的極小值點(diǎn)與f (x)的極小值點(diǎn)相同.
求證:g(x)的極大值小于等于
.
(Ⅰ) 解: 當(dāng)a=2時(shí),f ′(x)=x2-3x+2=(x-1)(x-2).
列表如下:
|
x |
(- |
1 |
(1,2) |
2 |
(2,+ |
|
f ′(x) |
+ |
0 |
- |
0 |
+ |
|
f (x) |
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
所以,f (x)極小值為f (2)=
. …………………………………5分
(Ⅱ) 解:f ′(x)=x2-(a+1)x+a=(x-1)(x-a).
g ′(x)=3x2+2bx-(2b+4)+
=
.
令p(x)=3x2+(2b+3)x-1,
(1) 當(dāng) 1<a≤2時(shí),
f (x)的極小值點(diǎn)x=a,則g(x)的極小值點(diǎn)也為x=a,
所以p(a)=0,
即3a2+(2b+3)a-1=0,
即b=
,
此時(shí)g(x)極大值=g(1)=1+b-(2b+4)=-3-b
=-3+
=
.
由于1<a≤2,
故
≤![]()
2-
-
=
.………………………………10分
(2) 當(dāng)0<a<1時(shí),
f (x)的極小值點(diǎn)x=1,則g(x)的極小值點(diǎn)為x=1,
由于p(x)=0有一正一負(fù)兩實(shí)根,不妨設(shè)x2<0<x1,
所以0<x1<1,
即p(1)=3+2b+3-1>0,
故b>-
.
此時(shí)g(x)的極大值點(diǎn)x=x1,
有 g(x1)=x13+bx12-(2b+4)x1+lnx1
<1+bx12-(2b+4)x1
=(x12-2x1)b-4x1+1 (x12-2x1<0)
<-
(x12-2x1)-4x1+1
=-
x12+x1+1
=-
(x1-
)2+1+
(0<x1<1)
≤![]()
<
.
綜上所述,g(x)的極大值小于等于
. ……………………15分
【解析】略
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江蘇省如皋市五校高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
((本題滿分15分)
某有獎(jiǎng)銷售將商品的售價(jià)提高120元后允許顧客有3次抽獎(jiǎng)的機(jī)會(huì),每次抽獎(jiǎng)的方法是在已經(jīng)設(shè)置并打開了程序的電腦上按“Enter”鍵,電腦將隨機(jī)產(chǎn)生一個(gè) 1~6的整數(shù)數(shù)作為號(hào)碼,若該號(hào)碼是3的倍數(shù)則顧客獲獎(jiǎng),每次中獎(jiǎng)的獎(jiǎng)金為100元,運(yùn)用所學(xué)的知識(shí)說(shuō)明這樣的活動(dòng)對(duì)商家是否有利。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省招生適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)設(shè)函數(shù)
.
(Ⅰ)若函數(shù)
在
上單調(diào)遞增,在
上單調(diào)遞減,求實(shí)數(shù)
的最大值;
(Ⅱ)若
對(duì)任意的
,
都成立,求實(shí)數(shù)
的取值范圍.
注:
為自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期初摸底文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知直線
與曲線
相切
1)求b的值;
2)若方程
在
上恰有兩個(gè)不等的實(shí)數(shù)根
,求
①m的取值范圍;
②比較
的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知拋物線
:
(
),焦點(diǎn)為
,直線
交拋物線
于
、
兩點(diǎn),
是線段
的中點(diǎn),
過(guò)
作
軸的垂線交拋物線
于點(diǎn)
,
(1)若拋物線
上有一點(diǎn)
到焦點(diǎn)
的距離為
,求此時(shí)
的值;
(2)是否存在實(shí)數(shù)
,使
是以
為直角頂點(diǎn)的直角三角形?若存在,求出
的值;若不存在,說(shuō)明理由。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省六校高三第一次聯(lián)考文科數(shù)學(xué) 題型:解答題
(本題滿分15分)
已知函數(shù)![]()
(1)求
的單調(diào)區(qū)間;
(2)設(shè)
,若
在
上不單調(diào)且僅在
處取得最大值,求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com