分析 根據(jù)條件判斷函數(shù)f(x)的奇偶性和單調性即可.
解答 解:∵$f(x)=\left\{\begin{array}{l}{x^3}\\-{x^3}\end{array}\right.\begin{array}{l}x≥0,\\ x<0,\end{array}$,
∴f(-x)=f(x),即函數(shù)f(x)是偶函數(shù),在[0,+∞)上為增函數(shù),
則不等式f(3a-1)≥8f(a),等價為f(|3a-1|)≥f(2|a|),
∴|3a-1|≥2|a|,解得a∈$({-∞,\frac{1}{5}}]∪[{1,+∞})$.
故答案為$({-∞,\frac{1}{5}}]∪[{1,+∞})$.
點評 本題主要考查不等式的求解,根據(jù)條件判斷函數(shù)的奇偶性和單調性是解決本題的關鍵.綜合考查函數(shù)的性質.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 101 | B. | 808 | C. | 1212 | D. | 2012 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 奇函數(shù) | B. | 偶函數(shù) | ||
| C. | 既是奇函數(shù)也是偶函數(shù) | D. | 既不是奇函數(shù)也不是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $-\frac{1}{2}$ | B. | 1 | C. | -2 | D. | $\frac{11}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | e${\;}^{\frac{1}{2}}$ | B. | 2e${\;}^{\frac{1}{2}}$ | C. | e${\;}^{\frac{2}{3}}$ | D. | $\frac{3}{2}$e${\;}^{\frac{2}{3}}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com