【題目】已知曲線
的方程為
,集合
,若對(duì)于任意的
,都存在
,使得
成立,則稱曲線
為
曲線.下列方程所表示的曲線中,是
曲線的有__________(寫出所有
曲線的序號(hào))
①
;②
;③
;④![]()
【答案】①③
【解析】
將問題轉(zhuǎn)化為:對(duì)于曲線
上任意一點(diǎn)
,在曲線上存在著點(diǎn)
使得
,據(jù)此逐項(xiàng)判斷曲線是否為
曲線.
①
的圖象既關(guān)于
軸對(duì)稱,也關(guān)于
軸對(duì)稱,且圖象是封閉圖形,
所以對(duì)于任意的點(diǎn)
,存在著點(diǎn)
使得
,所以①滿足;
②
的圖象是雙曲線,且雙曲線的漸近線斜率為
,所以漸近線將平面分為四個(gè)夾角為
的區(qū)域,
當(dāng)
在雙曲線同一支上,此時(shí)
,當(dāng)
不在雙曲線同一支上,此時(shí)
,
所以
,
不滿足,故②不滿足;
③
的圖象是焦點(diǎn)在
軸上的拋物線,且關(guān)于
軸對(duì)稱,連接
,再過
點(diǎn)作
的垂線,
則垂線一定與拋物線交于
點(diǎn),所以
,所以
,所以③滿足;
④取
,若
,則有
,顯然不成立,所以此時(shí)
不成立,所以④不滿足.
故答案為:①③.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2018·湖南師大附中摸底)已知直線l經(jīng)過點(diǎn)P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長(zhǎng)為8,則直線l的方程是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:
,直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與E有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.
若
,點(diǎn)K在橢圓E上,
、
分別為橢圓的兩個(gè)焦點(diǎn),求
的范圍;
證明:直線OM的斜率與l的斜率的乘積為定值;
若l過點(diǎn)
,射線OM與橢圓E交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)直線l斜率;若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問題,計(jì)劃征用一塊土地蓋一幢建筑總面積為10000
公寓樓(每層的建筑面積相同).已知士地的征用費(fèi)為
,土地的征用面積為第一層的
倍,經(jīng)工程技術(shù)人員核算,第一層建筑費(fèi)用為
,以后每增高一層,其建筑費(fèi)用就增加
,設(shè)這幢公寓樓高層數(shù)為n,總費(fèi)用為
萬元.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和)
(1)若總費(fèi)用不超過835萬元,求這幢公寓樓最高有多少層數(shù)?
(2)試設(shè)計(jì)這幢公寓的樓層數(shù),使總費(fèi)用最少,并求出最少費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正數(shù)數(shù)列
、
滿足:
≥
,且對(duì)一切k≥2,k
,
是
與
的等差中項(xiàng),
是
與
的等比中項(xiàng).
(1)若
,
,求
,
的值;
(2)求證:
是等差數(shù)列的充要條件是
為常數(shù)數(shù)列;
(3)記
,當(dāng)n≥2(n
)時(shí),指出
與
的大小關(guān)系并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體
,則下列四個(gè)命題:
![]()
①點(diǎn)
在直線
上運(yùn)動(dòng)時(shí),直線
與直線
所成角的大小不變
②點(diǎn)
在直線
上運(yùn)動(dòng)時(shí),直線
與平面
所成角的大小不變
③點(diǎn)
在直線
上運(yùn)動(dòng)時(shí),二面角
的大小不變
④點(diǎn)
在直線
上運(yùn)動(dòng)時(shí),三棱錐
的體積不變
其中的真命題是 ( )
A.①③B.③④C.①②④D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形
是矩形,
平面
,
,點(diǎn)
在線段
上(不為端點(diǎn)),且滿足
,其中
.
![]()
(1)若
,求直線
與平面
所成的角的大;
(2)是否存在
,使
是
的公垂線,即
同時(shí)垂直
?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若
在區(qū)間
上不是單調(diào)函數(shù),求實(shí)數(shù)
的范圍;
(2)若對(duì)任意
,都有
恒成立,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
時(shí),設(shè)
,對(duì)任意給定的正實(shí)數(shù)
,曲線
上是否存在兩點(diǎn)
,
,使得
是以
(
為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在
軸上?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=BC=4,點(diǎn)E在線段AB上.過點(diǎn)E作EF∥BC交AC于點(diǎn)F,將△AEF沿EF折起到△PEF的位置(點(diǎn)A與P重合),使得∠PEB=60°.
![]()
(1)求證:EF⊥PB.
(2)試問:當(dāng)點(diǎn)E在線段AB上移動(dòng)時(shí),二面角PFCB的平面角的余弦值是否為定值?若是,求出其定值;若不是,說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com