【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個(gè)從生活垃圾中提煉生物柴油的項(xiàng)目.經(jīng)測(cè)算,該項(xiàng)目月處理成本
(元)與月處理量
(噸)之間的函數(shù)關(guān)系可以近似地表示為:
,且每處理一噸生活垃圾,可得到能利用的生物柴油價(jià)值為
元,若該項(xiàng)目不獲利,政府將給予補(bǔ)貼.
(1)當(dāng)
時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?
(2)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
【答案】(1)政府每月至少需要補(bǔ)貼
元才能使該項(xiàng)目不虧損;(2)當(dāng)每月處理量為400噸時(shí),才能使每噸的平均處理成本最低.
【解析】試題分析:(1)先確定該項(xiàng)目獲利的函數(shù),再利用配方法確定不會(huì)獲利,從而可求政府每月至少需要補(bǔ)貼的費(fèi)用;
(2)確定食品殘?jiān)拿繃嵉钠骄幚沓杀竞瘮?shù),分別求出分段函數(shù)的最小值,即可求得結(jié)論.
試題解析:
(1)當(dāng)
時(shí),該項(xiàng)目獲利為
,則 ![]()
∴當(dāng)
時(shí),
,因此,該項(xiàng)目不會(huì)獲利
當(dāng)
時(shí),
取得最大值
,
所以政府每月至少需要補(bǔ)貼
元才能使該項(xiàng)目不虧損;
(2)由題意可知,生活垃圾每噸的平均處理成本為: ![]()
當(dāng)
時(shí), ![]()
所以當(dāng)
時(shí),
取得最小值240;
當(dāng)
時(shí), ![]()
當(dāng)且僅當(dāng)
,即
時(shí),
取得最小值200
因?yàn)?40>200,所以當(dāng)每月處理量為400噸時(shí),才能使每噸的平均處理成本最低.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=
![]()
(1)求△ACD的面積;
(2)若BC=2
,求AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足:對(duì)任意的x1 , x2∈(﹣∞,0)(x1≠x2),都有
<0.則下列結(jié)論正確的是( )
A.f(0.32)<f(20.3)<f(log25)
B.f(log25)<f(20.3)<f(0.32)
C.f(log25)<f(0.32)<f(20.3)
D.f(0.32)<f(log25)<f(20.3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知對(duì)任意x∈R,恒有f(﹣x)=﹣f(x),g(﹣x)=g(x),且當(dāng)x>0時(shí),f′(x)>0,g′(x)>0,則當(dāng)x<0時(shí)有( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】水培植物需要一種植物專用營(yíng)養(yǎng)液,已知每投放
(
且
)個(gè)單位的營(yíng)養(yǎng)液,它在水中釋放的濃度
(克/升)隨著時(shí)間
(天)變化的函數(shù)關(guān)系式近似為
,其中
,若多次投放,則某一時(shí)刻水中的營(yíng)養(yǎng)液濃度為每次投放的營(yíng)養(yǎng)液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中營(yíng)養(yǎng)液的濃度不低于4(克/升)時(shí),它才能有效.
(1)若只投放一次2個(gè)單位的營(yíng)養(yǎng)液,則有效時(shí)間最多可能達(dá)到幾天?
(2)若先投放2個(gè)單位的營(yíng)養(yǎng)液,3天后再投放
個(gè)單位的營(yíng)養(yǎng)液,要使接下來(lái)的2天中,營(yíng)養(yǎng)液能夠持續(xù)有效,試求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列推理中屬于歸納推理且結(jié)論正確的是( )
A.由an=2n﹣1,求出S1=12 , S2=22 , S3=32 , …,推斷:數(shù)列{an}的前n項(xiàng)和Sn=n2
B.由f(x)=xcosx滿足f(﹣x)=﹣f(x)對(duì)?x∈R都成立,推斷:f(x)=xcosx為奇函數(shù)
C.由圓x2+y2=r2的面積S=πr2 , 推斷:橢圓
=1的面積S=πab
D.由(1+1)2>21 , (2+1)2>22 , (3+1)2>23 , …,推斷:對(duì)一切n∈N* , (n+1)2>2n
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
中,
,前
項(xiàng)和
滿足
(
).
⑴ 求數(shù)列
的通項(xiàng)公式;
⑵ 記
,求數(shù)列
的前
項(xiàng)和
;
⑶ 是否存在整數(shù)對(duì)
(其中
,
)滿足
?若存在,求出所有的滿足題意的整數(shù)對(duì)
;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com