分析 此題考察函數(shù)的求導(dǎo)和利用導(dǎo)數(shù)研究函數(shù)單調(diào)性.(1)可由公式求導(dǎo),得出a和b的關(guān)系式.(2)求導(dǎo),根據(jù)f′(x)的符號(hào),進(jìn)而確定f(x)的單調(diào)區(qū)間:f′(x)>0,則f(x)在對(duì)應(yīng)區(qū)間上是增函數(shù),對(duì)應(yīng)區(qū)間為增區(qū)間;f′(x)<0,則f(x)在對(duì)應(yīng)區(qū)間上是減函數(shù),對(duì)應(yīng)區(qū)間為減區(qū)間.該題又用到二次函數(shù)的知識(shí)分類討論.
解答 解:(1)由f′(x)=x2+2ax+b,
∴f′(-1)=1-2a+b=0
∴b=2a-1
(2)f(x)=x3+ax2+(2a-1)x,
∴f′(x)=x2+2ax+2a-1
=(x+1)(x+2a-1)
令f′(x)=0,得x=-1或x=1-2a
①當(dāng)a>1時(shí),1-2a<-1
當(dāng)x變化時(shí),根據(jù)f′(x)與f(x)的變化情況得,
函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,1-2a)和(-1,+∞),單調(diào)減區(qū)間為(1-2a,-1)
②當(dāng)a=1時(shí),1-2a=-1,此時(shí)有f′(x)≥0恒成立,且僅在x=-1處f′(x)=0,故函數(shù)f(x)的單調(diào)增區(qū)間為R、
③當(dāng)a<1時(shí),1-2a>-1,同理可得,函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-1)和(1-2a,+∞),
單調(diào)減區(qū)間為(-1,1-2a)
綜上:當(dāng)a>1時(shí),函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,1-2a)和(-1,+∞),單調(diào)減區(qū)間為(1-2a,-1);
當(dāng)a=1時(shí),函數(shù)f(x)的單調(diào)增區(qū)間為R;
當(dāng)a<1時(shí),函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-1)和(1-2a,+∞),單調(diào)減區(qū)間為(-1,1-2a)
點(diǎn)評(píng) 此題是常規(guī)題型,難點(diǎn)是通過f′(x)的符號(hào),確定f(x)的單調(diào)區(qū)間
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 關(guān)于點(diǎn)($\frac{5π}{12}$,0)對(duì)稱 | B. | 關(guān)于直線x=$\frac{5π}{12}$對(duì)稱 | ||
| C. | 關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱 | D. | 關(guān)于直線x=$\frac{π}{12}$對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 所有的實(shí)數(shù)x都能使x+$\frac{1}{x}$≥2成立 | |
| B. | 存在一個(gè)實(shí)數(shù)x使不等式x2-2x+3<0成立 | |
| C. | 如果x、y 是實(shí)數(shù),那么“xy>0”是“|x+y|=|x|+|y|”的充分但不必要條件 | |
| D. | 命題甲:“a、b、c”成等差數(shù)列”是命題乙:“$\frac{a}+\frac{c}$=2”的充要條件 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com