已知
,且
,求
的最小值.某同學(xué)做如下解答:
因為
,所以
┄①,
┄②,
①
②得
,所以
的最小值為24.
判斷該同學(xué)解答是否正確,若不正確,請在以下空格內(nèi)填寫正確的最小值;若正確,請在以下空格內(nèi)填寫取得最小值時
、
的值. .
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市十三校高三12月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知
,且
,求
的最小值.某同學(xué)做如下解答:
因為
,所以
┄①,
┄②,
①
②得
,所以
的最小值為24.
判斷該同學(xué)解答是否正確,若不正確,請在以下空格內(nèi)填寫正確的最小值;若正確,請在以下空格內(nèi)填寫取得最小值時
、
的值. .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市十三校高三12月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知
,且
,求
的最小值.某同學(xué)做如下解答:
因為
,所以
┄①,
┄②,
①
②得
,所以
的最小值為24.
判斷該同學(xué)解答是否正確,若不正確,請在以下空格內(nèi)填寫正確的最小值;若正確,請在以下空格內(nèi)填寫取得最小值時
、
的值. .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三5月高考三輪模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題
(I)試證明柯西不等式:![]()
![]()
(II)已知
,且
,求
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com