【題目】(導(dǎo)學(xué)號:05856266)[選修4-5:不等式選講]
設(shè)函數(shù)f(x)=|2x-1|-|x+2|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若x0∈R,使得f
+2m2<4m,求實(shí)數(shù)m的取值范圍.
【答案】(1)
(2) ![]()
【解析】試題分析:(1)利用零點(diǎn)分區(qū)間討論去掉絕對值符號,化為分段函數(shù),在每一個前提下去解不等式,每一步的解都要和前提條件找交集得出每一步的解,最后把每一步最后結(jié)果找并集得出不等式的解;
(2)根據(jù)第一步所化出的分段函數(shù)求出函數(shù)f(x)的最小值,若x0∈R,使得f(x0)+2m2<4m成立,只需4m﹣2m2>fmin(x),解出實(shí)數(shù)m的取值范圍.
試題解析:
(Ⅰ)當(dāng)x<-2時,f(x)=
-
=1-2x+x+2=-x+3,
由f(x)>0,即-x+3>0,解得x<3.
又x<-2,所以x<-2;
當(dāng)-2≤x≤
時,f(x)=
-
=1-2x-x-2=-3x-1,
由f(x)>0,即-3x-1>0,解得x<-
.又-2≤x≤
,所以-2≤x<-
;
當(dāng)x>
時,f(x)=
-
=2x-1-x-2=x-3,由f(x)>0,即x-3>0,解得x>3.
又x>
,所以x>3.
綜上,不等式f(x)>0的解集為
.
(Ⅱ)f(x)=
-![]()
=![]()
所以f(x)min=f
=-
.
因?yàn)?/span>x0∈R,使得f
+2m2<4m,
所以4m-2m2>f(x)min=-
,整理得4m2-8m-5<0,解得-
<m<
.
因此,實(shí)數(shù)m的取值范圍是
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(a>b>0)的離心率為
,焦距為2c,且c,
,2成等比數(shù)列.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)B坐標(biāo)為(0,
),問是否存在過點(diǎn)B的直線l交橢圓C于M,N兩點(diǎn),且滿足
(O為坐標(biāo)原點(diǎn))?若存在,求出此時直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
在區(qū)間
上是單調(diào)增函數(shù),則實(shí)數(shù)
的取值范圍為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還
升,
升,
升,1斗為10升,則下列判斷正確的是( )
A.
,
,
依次成公比為2的等比數(shù)列,且![]()
B.
,
,
依次成公比為2的等比數(shù)列,且![]()
C.
,
,
依次成公比為
的等比數(shù)列,且![]()
D.
,
,
依次成公比為
的等比數(shù)列,且![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中的假命題是( )
A. α,β∈R,使sin(α+β)=sinα+sinβ
B. φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù)
C. x0∈R,使
(a,b,c∈R且為常數(shù))
D. a>0,函數(shù)f(x)=ln2x+lnx-a有零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知
.
(1)求C;
(2)若c=
,△ABC的面積為
,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為1∶3,且成績分布在[40,100],分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎.按文、理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.
![]()
(1)求a的值,并計算所抽取樣本的平均值
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)填寫下面的2×2列聯(lián)表,并判斷能否有超過95%的把握認(rèn)為“獲獎與學(xué)生的文、理科有關(guān)”?
文科生 | 理科生 | 合計 | |
獲獎 | 5 | ||
不獲獎 | |||
合計 | 200 |
附表及公式: ![]()
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是指企業(yè)的校園,地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是一種分時租賃模式,某共享單車企業(yè)為更好服務(wù)社會,隨機(jī)調(diào)查了100人,統(tǒng)計了這100人每日平均騎行共享單車的時間(單位:分鐘),由統(tǒng)計數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時間在
三組對應(yīng)的人數(shù)依次成等差數(shù)列
![]()
(1)求頻率分布直方圖中
的值.
(2)若將日平均騎行時間不少于80分鐘的用戶定義為“忠實(shí)用戶”,將日平均騎行時間少于40分鐘的用戶為“潛力用戶”,現(xiàn)從上述“忠實(shí)用戶”與“潛力用戶”的人中按分層抽樣選出5人,再從這5人中任取3人,求恰好1人為“忠實(shí)用戶”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856310)
已知函數(shù)f(x)=x+
+ln x(a∈R).
(Ⅰ)當(dāng)a=2時, 求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的函數(shù)g(x)=
-f(x)+ln x+2e(e為自然對數(shù)的底數(shù))有且只有一個零點(diǎn),求實(shí)數(shù)a的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com