【題目】設(shè)向量
=(sinx,cosx),
=(cosx,sinx),x∈R,函數(shù)f(x)=
(
﹣
).
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈[-
,
]時,求函數(shù)f(x)的值域.
【答案】
(1)解:
,
;
∴ ![]()
=sinx(sinx﹣cosx)+cosx(cosx﹣sinx)
=sin2x﹣sinxcosx+cos2x﹣sinxcosx
=1﹣sin2x;
∴
;
即f(x)的最小正周期為π
(2)解:
時,
;
∴﹣1≤sin2x≤1;
∴0≤1﹣sin2x≤2;
∴f(x)的值域為[0,2]
【解析】(1)可求出向量
的坐標(biāo),從而進(jìn)行向量數(shù)量積的坐標(biāo)運算即可求出
,并化簡便可得出f(x)=1﹣sin2x,從而由周期的計算公式即可求出函數(shù)f(x)的最小正周期;(2)可根據(jù)x的范圍求出2x的范圍,根據(jù)正弦函數(shù)的圖象便可求出sin2x的范圍,進(jìn)一步得出1﹣sin2x的范圍,即f(x)的范圍,即得出f(x)的值域.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,cos(A﹣C)+cosB=
,b2=ac,求B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若橢圓
+
=1的焦點在x軸上,過點(1,
)作圓x2+y2=1的切線,切點分別為A,B,直線AB恰好經(jīng)過橢圓的右焦點和上頂點,則橢圓方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列是有關(guān)三角形ABC的幾個命題,
①若tanA+tanB+tanC>0,則△ABC是銳角三角形;
②若sin2A=sin2B,則△ABC是等腰三角形;
③若(
+
)
=0,則△ABC是等腰三角形;
④若cosA=sinB,則△ABC是直角三角形;
其中正確命題的個數(shù)是( )
A..1
B..2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
且
,
為自然對數(shù)的底數(shù)).
(1)若曲線
在點
處的切線斜率為0,且
有極小值,
求實數(shù)
的取值范圍.
(2)當(dāng)
時,若不等式:
在區(qū)間
內(nèi)恒成立,求實數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點P(1,1),并與直線l1:x﹣y+3=0和l2:2x+y﹣6=0分別交于點A、B,若線段AB被點P平分. 求:
(1)直線l的方程;
(2)以O(shè)為圓心且被l截得的弦長為
的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是定義在
上的奇函數(shù),且當(dāng)
時,
,則對任意
,函數(shù)
的零點個數(shù)至多有( )
A. 3個 B. 4個 C. 6個 D. 9個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)一點O滿足
=
,若△ABC內(nèi)任意投一個點,則該點△OAC內(nèi)的概率為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點,兩定點A,B滿足|
|=|
|=
=2,則點集{P|
=x
+y
,|x|+|y|≤1,x,y∈R}所表示的區(qū)域的面積是 .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com