分析 求函數的導數,判斷函數單調性即可得到結論.
解答 解:函數的f(x)的導數f′(x)=$\frac{x}{\sqrt{1+{x}^{2}}}-1$=$\frac{x-\sqrt{1+{x}^{2}}}{\sqrt{1+{x}^{2}}}$,
若x≤0,則f′(x)<0,
若x>0,則$\sqrt{1+{x}^{2}}$$>\sqrt{{x}^{2}}$=x,
則x-$\sqrt{1+{x}^{2}}$<0,
綜上f′(x)<0,即函數在(-∞,+∞)上單調遞減,
即函數的單調遞減區(qū)間為(-∞,+∞).
點評 本題主要考查函數單調性和單調區(qū)間的求解,求函數的導數,利用導數研究函數的單調性是解決本題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | {x|0<x<2} | B. | {x|0≤x<2} | C. | {x|-1<x≤3} | D. | {x|2<x≤3} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | [-7,1] | B. | [-1,2] | C. | (-∞,-$\frac{4}{3}$]∪[1,+∞] | D. | (-∞,-7]∪[2,+∞) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com