分析 (1)利用二倍角公式以及兩角和的正切函數(shù)化簡表達式,代入數(shù)值求解即可.
(2)化簡g(x)=$\frac{1}{2}$f(x)+sin2x,然后求解對稱軸,對稱中心和最大值.
解答 解:(1)函數(shù)f(x)=$\frac{4co{s}^{4}x-2cos2x-1}{tan(\frac{π}{4}+x)co{s}^{2}(\frac{π}{4}+x)}$=$\frac{cos2x(2{cos}^{2}x+1)-2cos2x}{\frac{1+tanx}{1-tanx}×\frac{1}{2}{(cosx-sinx)}^{2}}$=$\frac{2cos2x(2{cos}^{2}x+1)-4cos2x}{(cosx+sinx){(cosx-sinx)}^{\;}}$
=4cos2x=2cos2x+2.
f(-$\frac{5π}{12}$)=2cos(-$\frac{5π}{6}$)+2=2-$\sqrt{3}$.
(2)g(x)=$\frac{1}{2}$f(x)+sin2x=cos2x+sin2x+1=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,
由2x+$\frac{π}{4}$=$kπ+\frac{π}{2}$,k∈Z,可得x=$\frac{kπ}{2}+\frac{π}{8}$,k∈Z,函數(shù)的對稱軸x=$\frac{kπ}{2}+\frac{π}{8}$,k∈Z,
由2x+$\frac{π}{4}$=kπ,k∈Z,解得x=$\frac{kπ}{2}-\frac{π}{8}$,k∈Z,
對稱中心($\frac{kπ}{2}-\frac{π}{8}$,1),k∈Z;
最大值:$\sqrt{2}+1$.
點評 本題考查三角函數(shù)的化簡求值,三角函數(shù)的性質(zhì)的應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{π}{4}$ | B. | $\frac{π}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com