分析 (Ⅰ)利用線面垂直的判定,證明PA⊥平面PCD,可得PA⊥PC;
(Ⅱ)過(guò)點(diǎn)P作PF⊥AD于F,利用體積公式,即可求三棱錐P-ABD的體積;
(Ⅲ)確定O為球心,球的半徑OD,即可求四棱錐P-ABCD的外接球的表面積.
解答 (Ⅰ)證明:∵平面PAD⊥平面ABCD,底面ABCD是矩形,
∴CD⊥平面PAD,
∵PA?平面PAD,
∴CD⊥PA,
∵∠APD=90°,
∴PA⊥PD,
∵PD∩CD=D,
∴PA⊥平面PCD,
∵PC?平面PCD,
∴PA⊥PC;
(Ⅱ)解:過(guò)點(diǎn)P作PF⊥AD于F,則PF⊥平面ABD,PF=1,
∴VP-ABD=$\frac{1}{3}×\frac{1}{2}×2×4×1$=$\frac{4}{3}$;
(Ⅲ)解:由題意,設(shè)球心到平面ABCD的距離為h,R=$\sqrt{4+(1-h)^{2}}$=$\sqrt{5+{h}^{2}}$,h=0
∴球的半徑OD=$\frac{1}{2}\sqrt{{2}^{2}+{4}^{2}}$=$\sqrt{5}$,
∴四棱錐P-ABCD的外接球的表面積為20π.
點(diǎn)評(píng) 本題考查線面垂直的判定,考查三棱錐體積的計(jì)算,考查外接球的表面積,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1條 | B. | 2條 | C. | 3條 | D. | 4條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 直角三角形 | B. | 銳角三角形 | C. | 鈍角三角形 | D. | 以上都有可能 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com