【題目】已知動點E到點A
與點B
的直線斜率之積為
,點E的軌跡為曲線C.
(1)求C的方程;
(2)過點D
作直線l與曲線C交于
,
兩點,求
的最大值.
【答案】(1)
(2)
.
【解析】試題分析:
(1)直接設(shè)動點
的坐標(biāo)為
,把已知條件用數(shù)學(xué)式子翻譯出來并化簡即可,同時要注意變量的取值范圍;
(2)按直線
的斜率存在不存在分類,斜率不存在時,直線方程為
,直接求出
坐標(biāo),計算出數(shù)量積;當(dāng)直線
斜率存在時,設(shè)交點坐標(biāo)為
,設(shè)方程為
,代入曲線
的方程,消去
,由韋達(dá)定理可得
,計算出數(shù)量積
,并把
代入可得關(guān)于
的函數(shù),再由不等式知識求得最大值.
試題解析:
(1)設(shè)
,則
.因為E到點A
,與點B
的斜率之積為
,所以
,整理得C的方程為
.
(2)當(dāng)l垂直于軸時,l的方程為
,代入
得
,
.
.
當(dāng)l不垂直于
軸時,依題意可設(shè)
,代入
得
.因為
,設(shè)
,
.
則
,
.
![]()
![]()
綜上
,當(dāng)l垂直于
軸時等號成立,故
的最大值是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,
是兩條不同的直線,
,
,
是三個不同的平面,給出下列四個命題:
①若
,
,則![]()
②若
,
,
,則![]()
③若
,
,則![]()
④若
,
,則![]()
其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體ABC﹣A1B1C1中,AA1,BB1,CC1均垂直于平面ABC,AB⊥AC,AA1=4,CC1=1,AB=AC=BB1=2.
![]()
(Ⅰ)求證:A1C⊥平面ABC1;
(Ⅱ)求二面角B﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成3元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元.假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到頻數(shù)表如下.
甲公司送餐員送餐單數(shù)頻數(shù)表:
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 20 | 40 | 20 | 10 | 10 |
乙公司送餐員送餐單數(shù)頻數(shù)表:
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 20 | 20 | 40 | 10 |
根據(jù)上表數(shù)據(jù),利用所學(xué)的統(tǒng)計學(xué)知識:
(1)求甲公司送餐員日平均工資;
(2)某人擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日平均工資的角度考慮,他應(yīng)該選擇去哪家公司應(yīng)聘,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:x0∈(1,+∞),使得5+|x0|=6.q:x∈(0,+∞),
+81x≥a.
(1)若a=9,判斷命題¬p,p∨q,(¬p)∧(¬q)的真假,并說明理由;
(2)設(shè)命題r:x0∈R,x02+2x0+a-9≤0判斷r成立是q成立的什么條件,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
經(jīng)過點
,離心率為
,動點M(2,t)(
).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以OM為直徑且截直線
所得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點,過點F作OM的垂線與以OM為直徑的圓交于點N,證明線段ON的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點到直線
的距離為
.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)點
是拋物線上的動點,若以點
為圓心的圓在
軸上截得的弦長均為4,求證:圓
恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的中心在原點,焦點在
軸,離心率為
,且長軸長是短軸長的
倍.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)
過橢圓
左焦點
的直線
交
于
,
兩點,若對滿足條件的任意直線
,不等式
恒成立,求
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com