【題目】為準(zhǔn)確把握市場(chǎng)規(guī)律,某公司對(duì)其所屬商品售價(jià)進(jìn)行市場(chǎng)調(diào)查和模型分析,發(fā)現(xiàn)該商品一年內(nèi)每件的售價(jià)按月近似呈
的模型波動(dòng)(
為月份),已知3月份每件售價(jià)達(dá)到最高90元,直到7月份每件售價(jià)變?yōu)樽畹?/span>50元.則根據(jù)模型可知在10月份每件售價(jià)約為_____.(結(jié)果保留整數(shù))
【答案】84
【解析】
根據(jù)題意,可得當(dāng)
時(shí),函數(shù)有最大值為90;當(dāng)
時(shí),函數(shù)有最小值50,再利用正弦函數(shù)的最值,聯(lián)列方程組,解之可得
,
.根據(jù)函數(shù)的周期
,結(jié)合題意得到
,最后用函數(shù)取最大值時(shí)對(duì)應(yīng)
的值,可得
,從而可以確定
的解析式,再求10月份每件售價(jià).
月份達(dá)到最高價(jià)90元,7月份價(jià)格最低為50元,
當(dāng)
時(shí),函數(shù)有最大值為90;當(dāng)
時(shí),函數(shù)有最小值50,
![]()
,可得
,
又
函數(shù)的周期
,
由
,得
,
當(dāng)
時(shí),函數(shù)有最大值,
,即
,得
,
的解析式為:
.
所以![]()
故答案為: 84
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
.
(1)討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時(shí),證明:不等式
恒成立(其中
,
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy上取兩個(gè)定點(diǎn)A1(
,0),A2(
,0),再取兩個(gè)動(dòng)點(diǎn)N1(0,m),N2(0,n),且mn=2.
(1)求直線A1N1與A2N2交點(diǎn)M的軌跡C的方程;
(2)過(guò)R(3,0)的直線與軌跡C交于P,Q,過(guò)P作PN⊥x軸且與軌跡C交于另一點(diǎn)N,F為軌跡C的右焦點(diǎn),若
(λ>1),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的離心率為
,以橢圓長(zhǎng)、短軸四個(gè)端點(diǎn)為頂點(diǎn)為四邊形的面積為
.
![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)如圖所示,記橢圓的左、右頂點(diǎn)分別為
、
,當(dāng)動(dòng)點(diǎn)
在定直線
上運(yùn)動(dòng)時(shí),直線
分別交橢圓于兩點(diǎn)
、
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】3月底,我國(guó)新冠肺炎疫情得到有效防控,但海外確診病例卻持續(xù)暴增,防疫物資供不應(yīng)求,某醫(yī)療器械廠開(kāi)足馬力,日夜生產(chǎn)防疫所需物品.已知該廠有兩條不同生產(chǎn)線
和
生產(chǎn)同一種產(chǎn)品各10萬(wàn)件,為保證質(zhì)量,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績(jī)的莖葉圖如下所示:
![]()
該產(chǎn)品的質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)規(guī)定:鑒定成績(jī)達(dá)到
的產(chǎn)品,質(zhì)量等級(jí)為優(yōu)秀;鑒定成績(jī)達(dá)到
的產(chǎn)品,質(zhì)量等級(jí)為良好;鑒定成績(jī)達(dá)到
的產(chǎn)品,質(zhì)量等級(jí)為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
(1)從等級(jí)為優(yōu)秀的樣本中隨機(jī)抽取兩件,記
為來(lái)自
機(jī)器生產(chǎn)的產(chǎn)品數(shù)量,寫(xiě)出
的分布列,并求
的數(shù)學(xué)期望;
(2)請(qǐng)完成下面質(zhì)量等級(jí)與生產(chǎn)線產(chǎn)品列聯(lián)表,并判斷能不能在誤差不超過(guò)0.05的情況下,認(rèn)為產(chǎn)品等級(jí)是否達(dá)到良好以上與生產(chǎn)產(chǎn)品的生產(chǎn)線有關(guān).
|
| 合計(jì) | |
良好以上 | |||
合格 | |||
合計(jì) |
附:![]()
| 0.10 | 0.05 | 0.01 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】港珠澳大橋于2018年10月2刻日正式通車(chē),它是中國(guó)境內(nèi)一座連接香港、珠海和澳門(mén)的橋隧工程,橋隧全長(zhǎng)55千米.橋面為雙向六車(chē)道高速公路,大橋通行限速100km/h,現(xiàn)對(duì)大橋某路段上1000輛汽車(chē)的行駛速度進(jìn)行抽樣調(diào)查.畫(huà)出頻率分布直方圖(如圖),根據(jù)直方圖估計(jì)在此路段上汽車(chē)行駛速度在區(qū)間[85,90)的車(chē)輛數(shù)和行駛速度超過(guò)90km/h的頻率分別為( 。
![]()
A. 300,
B. 300,
C. 60,
D. 60,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)稱軸為坐標(biāo)軸的橢圓
的焦點(diǎn)為
,
,
在
上.
(1)求橢圓
的方程;
(2)設(shè)不過(guò)原點(diǎn)
的直線
與橢圓
交于
,
兩點(diǎn),且直線
,
,
的斜率依次成等比數(shù)列,則當(dāng)
的面積為
時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱柱
中,
為等邊三角形,
,
,
平面
,
是線段
上靠近
的三等分點(diǎn).
![]()
(1)求證:
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股之弦為邊的正方形,其面積稱為弦實(shí),圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用2×勾×股+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+股2=弦2,設(shè)勾股形中勾股比為
,若向弦圖內(nèi)隨機(jī)拋擲1000顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )
![]()
A.134B.866C.300D.188
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com