欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,若是函數的唯一極值點,則實數的取值范圍是( )

A. B. C. D.

【答案】A

【解析】分析:由f(x)的導函數形式可以看出ex﹣kx=0在(0,+∞)無變號零點

令g(x)=ex﹣kx,g′(x)=ex﹣k,需要對k進行分類討論來確定導函數為0時的根.

詳解:函數的定義域是(0,+∞),

∴f′(x)=

x=1是函數f(x)的唯一一個極值點

x=1是導函數f′(x)=0的唯一根.

∴ex﹣kx=0在(0,+∞)無變號零點

令g(x)=ex﹣kx

g′(x)=ex﹣k

①k≤0時,g′(x)0恒成立.g(x)在(0,+∞)時單調遞增的

g(x)的最小值為g(0)=1,g(x)=0無解

②k>0時,g′(x)=0有解為:x=lnk

0<x<lnk時,g′(x)0,g(x)單調遞減

lnk<x時,g′(x)0,g(x)單調遞增

g(x)的最小值為g(lnk)=k﹣klnk

∴k﹣klnk>0

∴k<e,

由y=ex和y=ex圖象,它們切于(1,e),

綜上所述,k≤e.

故答案為:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對某校高三年級學生參加社區(qū)服務次數進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務的次數.根據此數據作出了頻數與頻率的統(tǒng)計表和頻率分布直方圖:

分組

頻數

頻率

24

4

0.1

2

0.05

合計

1

(1)求出表中,及圖中的值;

(2)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務的次數在區(qū)間內的人數;

(3)在所取樣本中,從參加社區(qū)服務的次數不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數在區(qū)間內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對某種書籍每冊的成本費(元)與印刷冊數(千冊)的數據作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

4.83

4.22

0.3775

60.17

0.60

-39.38

4.8

其中.

為了預測印刷千冊時每冊的成本費,建立了兩個回歸模型.

(1)根據散點圖,你認為選擇哪個模型預測更可靠?(只選出模型即可)

(2)根據所給數據和(1)中的模型選擇,求關于的回歸方程并預測印刷千冊時每冊的成本費.

附:對于一組數據,,…,,其回歸方程的斜率和截距的最小二乘估計公式分別為,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在我國南宋數學家楊輝所著的《詳解九章算法》(1261年)一書中,用如圖所示的三角形,解釋二項和的乘方規(guī)律.在歐洲直到1623年以后,法國數學家布萊士帕斯卡的著作(1655年)介紹了這個三角形,近年來,國外也逐漸承認這項成果屬于中國,所以有些書上稱這是“中國三角形”,如圖.17世紀德國數學家萊布尼茨發(fā)現了“萊布尼茨三角形”,如圖.在楊輝三角中,相鄰兩行滿足關系式:,其 中是行數,.請類比上式,在萊布尼茨三角形中相鄰兩行滿足的關系式是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校高一年級學生某次身體素質體能測試的原始成績采用百分制,已知所有這些學生的原始成績均分布在內,發(fā)布成績使用等級制.各等級劃分標準見下表.

規(guī)定:三級為合格等級,D為不合格等級.為了解該校高一年級學生身體素質情況,從中抽取了名學生的原始成績作為樣本進行統(tǒng)計.按照的分組作出頻率分布直方圖如圖1所示,樣本中分數在80分及以上的所有數據的莖葉圖如圖2所示.

I)求和頻率分布直方圖中的的值,并估計該校高一年級學生成績是合格等級的概率;

II)在選取的樣本中,從兩個等級的學生中隨機抽取2名學生進行調研,求至少有一名學生是等級的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】A{x|2x2ax20}B{x|x23x2a0},且AB{2}

(1)a的值及集合A,B

(2)設全集UAB,求(UA)(UB);

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論函數的單調區(qū)間;

(2)若函數處取得極值,對恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中點,已知AB=2,AD=2 ,PA=2,求:

(1)三角形PCD的面積;
(2)異面直線BC與AE所成的角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了保護環(huán)境,某單位采用新工藝,把二氧化硅轉化為一種可利用的化工產品.已知該單位每月都有處理量,且處理量最多不超過噸,月處理成本(元)與月處理量(噸)之間的函數關系可近似的表示為:,且每處理一噸二氧化硅得到可利用的化工產品價值為.

1)設該單位每月獲利為(元),試將表示月處理(噸)的函數;

2)若要保證該單位每月不虧損,則每月處理量應控制在什么范圍?

3)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

同步練習冊答案