【題目】在四棱錐A-BCDE中,
平面BCDE,底面BCDE為直角梯形,
、
,
,F為AC上一點(diǎn),且
.
![]()
(1)求證:
平面ADE;
(2)求異面直線AB、DE所成角的余弦值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(α)=![]()
(1)化簡(jiǎn)f(α);
(2)若α是第三象限角,且cos(α-
)=
,求f(α);
(3)若α=-1860°,求f(α).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,函數(shù)
,
,若函數(shù)
有4個(gè)零點(diǎn),則實(shí)數(shù)
的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
,曲線
的參數(shù)方程為:
(
為參數(shù)).
(1)求曲線
,
的直角坐標(biāo)方程;
(2)設(shè)曲線
,
交于點(diǎn)
,
,已知點(diǎn)
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
的圓心
的坐標(biāo)為
,且圓
與直線
:
相切,過(guò)點(diǎn)
的動(dòng)直線
與圓
相交于
,
兩點(diǎn),直線
與直線
的交點(diǎn)為
.
(1)求圓
的標(biāo)準(zhǔn)方程;
(2)求
的最小值;
(3)問(wèn):
是否是定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)若
,是不等式
成立的必要不充分條件,求實(shí)數(shù)的
取值范圍;
(2)已知集合
,
.若“
”是“
”的充分條件,求實(shí)數(shù)
的取值范圍;
(3)已知命題“
,
”的否定為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列結(jié)論:
①“
且
為真”是“
或
為真”的充分不必要條件:②“
且
為假”是“
或
為真”的充分不必要條件;③“
或
為真”是“非
為假”的必要不充分條件;④“非
為真”是“
且
為假”的必要不充分條件.
其中,正確的結(jié)論是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
,若此橢圓上存在不同的兩點(diǎn)A,B關(guān)于直線y=4x+m對(duì)稱,則實(shí)數(shù)m的取值范圍是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com