如圖,在各棱長均為
的三棱柱
中,側(cè)面
底面
,
.![]()
(1)求側(cè)棱
與平面
所成角的正弦值的大;
(2)已知點(diǎn)
滿足
,在直線
上是否存在點(diǎn)
,使
?若存在,請(qǐng)確定點(diǎn)
的位置;若不存在,請(qǐng)說明理由.
(1)
(2)存在點(diǎn)
,使
.
解析試題分析:(1)首先根據(jù)幾何體的性質(zhì)建立空間直角坐標(biāo)系,利用“側(cè)棱
與平面
所成角,即是向量
與平面
的法向量所成銳角的余角”,借助向量夾角公式進(jìn)行計(jì)算;(2)假設(shè)存在點(diǎn)P滿足,設(shè)出其坐標(biāo),然后根據(jù)
建立等量關(guān)系,確定P點(diǎn)坐標(biāo)即可.
試題解析:(1)∵側(cè)面
底面
,作
于點(diǎn)
,∴
平面
.
又
,且各棱長都相等,∴
,
,
. 2分![]()
故以
為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系
,則
,
,
,
,
∴
,
,
. 4分
設(shè)平面
的法向量為
,
則
解得
.由
.
而側(cè)棱
與平面
所成角,即是向量
與平面
的法向量所成銳角的余角,
∴側(cè)棱
與平面
所成角的正弦值的大小為
6分
(2)∵
,而
∴![]()
又∵
,∴點(diǎn)
的坐標(biāo)為
.
假設(shè)存在點(diǎn)
符合題意,則點(diǎn)
的坐標(biāo)可設(shè)為
,∴
.
∵
,
為平面
的法向量,
∴由
,得
. 10分
又
平面
,故存在點(diǎn)
,
使
,其坐標(biāo)為
,
即恰好為
點(diǎn). 12分
考點(diǎn):1.線面角;2.線面平行;(3)空間向量的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
等邊三角形
的邊長為3,點(diǎn)
、
分別是邊
、
上的點(diǎn),且滿足![]()
(如圖1).將△
沿
折起到△
的位置,使二面角
成直二面角,連結(jié)
、
(如圖2).![]()
(1)求證:
平面
;
(2)在線段
上是否存在點(diǎn)
,使直線
與平面
所成的角為
?若存在,求出
的長,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,平面四邊形
的4個(gè)頂點(diǎn)都在球
的表面上,
為球
的直徑,
為球面上一點(diǎn),且
平面
,
,點(diǎn)
為
的中點(diǎn).
(1) 證明:平面
平面
;
(2) 求點(diǎn)
到平面
的距離.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱
的側(cè)棱與底面
垂直,底面
是等腰直角三角形,
,側(cè)棱
,
分別是
與
的中點(diǎn),點(diǎn)
在平面
上的射影是
的垂心![]()
![]()
(1)求證:
;
(2)求
與平面
所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,
,
,現(xiàn)將梯形沿CB、DA折起,使
且
,得一簡單組合體
如圖2示,已知
分別為
的中點(diǎn).
![]()
圖1 圖2
(1)求證:
平面
;
(2)求證: ![]()
;
(3)當(dāng)
多長時(shí),平面
與平面
所成的銳二面角為
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,ABCD是邊長為2的正方形,ED⊥平面ABCD, ED="1," EF//BD且2EF=BD.![]()
(1)求證:平面EAC⊥平面BDEF;
(2)求幾何體ABCDEF的體積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com