【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),在以
為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,曲線
是圓心為
,半徑為1的圓.
(1)求曲線
,
的直角坐標(biāo)方程;
(2)設(shè)
為曲線
上的點(diǎn),
為曲線
上的點(diǎn),求
的取值范圍.
【答案】(1)
的直角坐標(biāo)方程為
,
的直角坐標(biāo)方程為
;(2)
的取值范圍是
.
【解析】試題分析:(Ⅰ)消去參數(shù)
可得C1的直角坐標(biāo)方程,易得曲線C2的圓心的直角坐標(biāo)為(0,3),可得C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)M(2cos
,sin
),由三角函數(shù)和二次函數(shù)可得|MC2|的取值范圍,結(jié)合圓的知識可得答案.
試題解析:
(1)消去參數(shù)
可得
的直角坐標(biāo)方程為
.
曲線
的圓心的直角坐標(biāo)為
,
∴
的直角坐標(biāo)方程為
.
(2)設(shè)
,
則
.
∵
,∴
,
.
根據(jù)題意可得
,
,
即
的取值范圍是
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于集合
,定義了一種運(yùn)算“
”,使得集合
中的元素間滿足條件:如果存在元素
,使得對任意
,都有
,則稱元素
是集合
對運(yùn)算“
”的單位元素.例如:
,運(yùn)算“
”為普通乘法;存在
,使得對任意
,都有
,所以元素
是集合
對普通乘法的單位元素.
下面給出三個集合及相應(yīng)的運(yùn)算“
”:
①
,運(yùn)算“
”為普通減法;
②
{
表示
階矩陣,
},運(yùn)算“
”為矩陣加法;
③
(其中
是任意非空集合),運(yùn)算“
”為求兩個集合的交集.
其中對運(yùn)算“
”有單位元素的集合序號為( )
A. ①②; B. ①③; C. ①②③; D. ②③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一點(diǎn).
(Ⅰ)證明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中點(diǎn),求三棱錐AEBC的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
經(jīng)過
為坐標(biāo)原點(diǎn),線段
的中點(diǎn)在圓
上.
(1)求
的方程;
(2)直線
不過曲線
的右焦點(diǎn)
,與
交于
兩點(diǎn),且
與圓
相切,切點(diǎn)在第一象限,
的周長是否為定值?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
的參數(shù)方程為
,其中
為參數(shù),且
在直角坐標(biāo)系
中,以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線
的極坐標(biāo)方程;
(2)設(shè)
是曲線
上的一點(diǎn),直線
被曲線
截得的弦長為
,求
點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等式x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4,定義映射f:(a1,a2,a3,a4)→(b1,b2,b3,b4),則f(4,3,2,1)=( )
A. (1,2,3,4) B. (0,3,4,0)
C. (0,-3,4,-1) D. (-1,0,2,-2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從A、B兩地區(qū)分別隨機(jī)調(diào)查了20個用戶,得到用戶對產(chǎn)品的滿意度評分如下:
A地區(qū): | 62 | 73 | 81 | 92 | 95 | 85 | 74 | 64 | 53 | 76 |
78 | 86 | 95 | 66 | 97 | 78 | 88 | 82 | 76 | 89 | |
B地區(qū): | 73 | 83 | 62 | 51 | 91 | 46 | 53 | 73 | 64 | 82 |
93 | 48 | 95 | 81 | 74 | 56 | 54 | 76 | 65 | 79 |
(Ⅰ)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶滿意度評分的莖葉圖,并通過莖葉圖比較兩地區(qū)滿意度的平均值及分散程度(不要求算出具體值,給出結(jié)論即可):
![]()
(Ⅱ)根據(jù)用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:
滿意度評分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
記事件C:“A地區(qū)用戶的滿意度等級高于B地區(qū)用戶的滿意度等級”,假設(shè)兩地區(qū)用戶的評價結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為梯形,平面
平面
![]()
為側(cè)棱
的中點(diǎn),且
.
![]()
(1)證明:
平面
;
(2)若點(diǎn)
到平面
的距離為
,且
,求點(diǎn)到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
為拋物線
的焦點(diǎn),點(diǎn)
為點(diǎn)
關(guān)于原點(diǎn)的對稱點(diǎn),點(diǎn)
在拋物線
上,則下列說法錯誤的是( )
A. 使得
為等腰三角形的點(diǎn)
有且僅有4個
B. 使得
為直角三角形的點(diǎn)
有且僅有4個
C. 使得
的點(diǎn)
有且僅有4個
D. 使得
的點(diǎn)
有且僅有4個
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com