【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸,以相同的長度單位建立極坐標系.己知直線
的直角坐標方程為
,曲線C的極坐標方程為
.
(1)設t為參數(shù),若
,求直線
的參數(shù)方程和曲線C的直角坐標方程;
(2)已知:直線
與曲線C交于A,B兩點,設
,且
,
,
依次成等比數(shù)列,求實數(shù)a的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知
、
分別為橢圓
的左、右焦點,點
關于直線
對稱的點Q在橢圓上,則橢圓的離心率為______;若過
且斜率為
的直線與橢圓相交于AB兩點,且
,則
___.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為更好地落實農(nóng)民工工資保證金制度,南方某市勞動保障部門調(diào)查了
年下半年該市
名農(nóng)民工(其中技術工、非技術工各
名)的月工資,得到這
名農(nóng)民工月工資的中位數(shù)為
百元(假設這
名農(nóng)民工的月工資均在
(百元)內(nèi))且月工資收入在
(百元)內(nèi)的人數(shù)為
,并根據(jù)調(diào)查結果畫出如圖所示的頻率分布直方圖:
![]()
(Ⅰ)求
,
的值;
(Ⅱ)已知這
名農(nóng)民工中月工資高于平均數(shù)的技術工有
名,非技術工有
名,則能否在犯錯誤的概率不超過
的前提下認為是不是技術工與月工資是否高于平均數(shù)有關系?
參考公式及數(shù)據(jù):
,其中
.
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對滿足
的非空集合
、
,有下列四個命題:
①“若任取
,則
”是必然事件; ②“若
,則
”是不可能事件;
③“若任取
,則
”是隨機事件; ④“若
,則
”是必然事件.
其中正確命題的個數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐
中,
底面
,
,
,
,
.
![]()
(1)當
變化時,點
到平面
的距離是否為定值?若是,請求出該定值;若不是,請說明理由;
(2)當直線
與平面
所成的角為45°時,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某設計部門承接一產(chǎn)品包裝盒的設計(如圖所示),客戶除了要求
、
邊的長分別為
和
外,還特別要求包裝盒必需滿足:①平面
平面
;②平面
與平面
所成的二面角不小于
;③包裝盒的體積盡可能大.
若設計部門設計出的樣品滿足:
與
均為直角且
長
,矩形
的一邊長為
,請你判斷該包裝盒的設計是否能符合客戶的要求?說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
的部分圖象如圖所示.
![]()
(1)求
的值;
(2)求
在
上的最大值和最小值;
(3)不畫圖,說明函數(shù)
的圖象可由
的圖象經(jīng)過怎樣變化得到.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的離心率為
,左、右焦點分別為
、
,
為橢圓上異于長軸端點的點,且
的最大面積為
.
(1)求橢圓
的標準方程
(2)若直線
是過點
點的直線,且
與橢圓
交于不同的點
、
,是否存在直線
使得點
、
到直線
,的距離
、
,滿足
恒成立,若存在,求
的值,若不存在,說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com