(Ⅰ)求橢圓的離心率;
(Ⅱ)設M為橢圓上任意一點,且
,證明
為定值。
(21)(Ⅰ)解:設橢圓方程為
=1(a>b>0),F(c,0),
則直線AB的方程為y=x-c,
代入
=1,化簡得
(a2+b2)x2-2a2cx+a2c2-a2b2=0.
令A(x1,y1),B(x2,y2),
則 x1+x2=
.
由
=(x1+x2,y1+y2),a=(3,-1),
與a共線,得
3(y1+y2)+(x1+x2)=0。
又y1=x1-c,y2=x2-c,
∴3(x1+x2-2c)+(x1+x2)=0,
∴x1+x2=
.
即
所以a2=3b2.
∴ c=
,
故離心率e=![]()
(Ⅱ)證明:由(Ⅰ)知a2=3b2,所以橢圓
=1可化為x2+3y2=3b2.
設
=(x,y),由已知得
(x,y)=
(x1,y1)+μ(x2,y2),
![]()
∴M(x,y)在橢圓上,
∴(
x1+μx2)2+3(
y1+μy2)2=3b2.
即
2(x
+3y
)+μ2(x
+3y
)+2
μ(x1x2+3y1y2)=3b2. ①
由(Ⅰ)知x1+x2=
c,a2=
c2,b2=
c2.
∴x1x2=![]()
∴x1x2+3y1y2=x1x2+3(x1-c)(x2-c)
=4x1x2-3(x1+x2)c+3c2
=
c2-
c2+3c2
=0.
又x
+3y
=3b2,x
+3y
=3b2,代入①得
2+μ2=1。
故
2+μ2為定值,定值為1.
科目:高中數(shù)學 來源: 題型:
| x2 |
| 4 |
| y2 |
| 9 |
| π |
| 2 |
| π |
| 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
己知在銳角ΔABC中,角
所對的邊分別為
,且![]()
(I )求角
大小;
(II)當
時,求
的取值范圍.
![]()
20.如圖1,在平面內(nèi),
是
的矩形,
是正三角形,將
沿
折起,使
如圖2,
為
的中點,設直線
過點
且垂直于矩形
所在平面,點
是直線
上的一個動點,且與點
位于平面
的同側(cè)。
(1)求證:
平面
;
(2)設二面角
的平面角為
,若
,求線段
長的取值范圍。
![]()
![]()
21.已知A,B是橢圓
的左,右頂點,
,過橢圓C的右焦點F的直線交橢圓于點M,N,交直線
于點P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動點,R和Q的橫坐標之和為2,RQ的中垂線交X軸于T點
(1)求橢圓C的方程;
(2)求三角形MNT的面積的最大值
22. 已知函數(shù)
,
(Ⅰ)若
在
上存在最大值與最小值,且其最大值與最小值的和為
,試求
和
的值。
(Ⅱ)若
為奇函數(shù):
(1)是否存在實數(shù)
,使得
在
為增函數(shù),
為減函數(shù),若存在,求出
的值,若不存在,請說明理由;
(2)如果當
時,都有
恒成立,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
已知點
,過點
作拋物線![]()
的切線
,切點
在第二象限,如圖.
(Ⅰ)求切點
的縱坐標;
(Ⅱ)若離心率為
的橢圓
恰好經(jīng)過切點
,設切線
交橢圓的另一點為
,記切線
的斜率分別為
,若
,求橢圓方程.
21(本小題滿分12分)
已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)當
時,
恒成立,求實數(shù)
的取值范圍;
(3)證明:![]()
.
22.選修4-1:幾何證明選講
如圖,
是圓
的直徑,
是弦,
的平分線
交圓
于點
,
,交
的延長線于點
,
交
于點
。
(1)求證:
是圓
的切線;
(2)若
,求
的值。
23.選修4—4:坐標系與參數(shù)方程
在平面直角坐標系中,直線
過點
且傾斜角為
,以坐標原點為極點,
軸的非負半軸為極軸,建立極坐標系,曲線
的極坐標方程為
,直線
與曲線
相交于
兩點;
(1)若
,求直線
的傾斜角
的取值范圍;
(2)求弦
最短時直線
的參數(shù)方程。
24. 選修4-5 不等式選講
已知函數(shù)![]()
(I)試求
的值域;
(II)設
,若對
,恒有
成立,試求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江蘇省南通市海門中學高三(上)開學檢測數(shù)學試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江蘇省南通市海門中學高三(上)開學檢測數(shù)學試卷(解析版) 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com