【題目】由國家統(tǒng)計局提供的數(shù)據(jù)可知,2012年至2018年中國居民人均可支配收入
(單位:萬元)的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均可支配收入 | 1.65 | 1.83 | 2.01 | 2.19 | 2.38 | 2.59 | 2.82 |
(1)求
關(guān)于
的線性回歸方程(系數(shù)精確到0.01);
(2)利用(1)中的回歸方程,分析2012年至2018年中國居民人均可支配收入的變化情況,并預測2019年中國居民人均可支配收入.
附注:參考數(shù)據(jù):
,
.
參考公式:回歸直線方程
的斜率和截距的最小二乘估計公式分別為:
,
.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,直線
的參數(shù)方程為
(其中
為參數(shù)
),以原點為極點,
軸非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的焦點的極坐標;
(2)若曲線
的上焦點為
,直線
與曲線
交于
,
兩點,
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,其中
為實數(shù),
為自然對數(shù)的底數(shù).
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)是否存在實數(shù)
,使得對任意給定的
,在區(qū)間
上總存在三個不同的
,使得
成立?若存在,求出實數(shù)
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知函數(shù)
.
(1)討論f(x)的單調(diào)性,并證明f(x)有且僅有兩個零點;
(2)設(shè)x0是f(x)的一個零點,證明曲線y=ln x 在點A(x0,ln x0)處的切線也是曲線
的切線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)
是曲線
上兩點,
兩點的橫坐標之和為4,直線
的斜率為2.
(1)求曲線
的方程;
(2)設(shè)
是曲線
上一點,曲線
在
點處的切線與直線
平行,且
,試求三角形
的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x﹣3|+|x+2|
(1)求不等式f(x)≤5的解集;
(2)若關(guān)于x的不等式f(x)≤a﹣|x|在區(qū)間[﹣1,2]上恒成立,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以直角坐標系的原點
為極點,
軸的正半軸為極軸建立極坐標系,已知點
的直角坐標為
,若直線
的極坐標方程為
曲線
的參數(shù)方程是
(
為參數(shù)).
(1)求直線
和曲線
的普通方程;
(2)設(shè)直線
和曲線
交于
兩點,求![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C過點(4,1),(0,1),(2,3),過點
的直線與圓C交于M,N兩點.
(1)若圓
:
,判斷圓C與圓
的位置關(guān)系,并說明理由;
(2)若
,求
的值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com