【題目】圓心在直線x﹣y+2=0上,且與兩坐標(biāo)軸都相切的圓的方程為( )
A. (x+1)2+(y﹣1)2=1 B. (x﹣1)2+(y+1)2=1 C. (x﹣1)2+(y+1)2=2 D. (x﹣1)2+(y﹣1)2=1
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(a,5)與圓x2+y2=24的位置關(guān)系是( )
A.點(diǎn)在圓外
B.點(diǎn)在圓內(nèi)
C.點(diǎn)在圓上
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為1的等邊三角形
中,
分別是
邊上的點(diǎn),
,
是
的中點(diǎn),
與
交于點(diǎn)
,將
沿
折起,得到如圖2所示的三棱錐
,其中
.
![]()
(1) 證明:
//平面
;
(2) 證明:![]()
平面
;
(3) 當(dāng)
時(shí),求三棱錐
的體積
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰梯形
中,
,
為
中點(diǎn), 點(diǎn)
分別為
的中點(diǎn), 將
沿
折起到
的位置,使得平面
平面
(如圖
).
![]()
![]()
(1)求證:
;
(2)求直線
與平面
所成角的正弦值;
(3)側(cè)棱
上是否存在點(diǎn)
,使得
平面
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
.
(Ⅰ)求橢圓
的離心率;
(Ⅱ)設(shè)
為坐標(biāo)原點(diǎn),
為橢圓
上的三個(gè)動點(diǎn),若四邊形
為平行四邊形,判斷
的面積是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
滿足
,其中
,
是不為1的常數(shù).
(Ⅰ)證明:若
是遞增數(shù)列,則
不可能是等差數(shù)列;
(Ⅱ)證明:若
是遞減的等比數(shù)列,則
中的每一項(xiàng)都大于其后任意
個(gè)項(xiàng)的和;
(Ⅲ)若
,且
是遞增數(shù)列,
是遞減數(shù)列,求數(shù)列
的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)在其定義域內(nèi)為偶函數(shù)的是( )
A.y=2x
B.y=2x
C.y=log2x
D.y=x2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高一、高二、高三年級的學(xué)生人數(shù)之比為3∶3∶4,現(xiàn)用分層抽樣的方法從該校高中三個(gè)年級的學(xué)生中抽取一個(gè)容量為50的樣本,則應(yīng)從高二年級抽取名學(xué)生.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com