【題目】為了緩解日益擁堵的交通狀況,不少城市實施車牌競價策略,以控制車輛數(shù)量.某地車牌競價的基本規(guī)則是:①“盲拍”,即所有參與競拍的人都要網(wǎng)絡(luò)報價一次,每個人不知曉其他人的報價,也不知道參與當(dāng)期競拍的總?cè)藬?shù);②競價時間截止后,系統(tǒng)根據(jù)當(dāng)期車牌配額,按照競拍人的出價從高到低分配名額.某人擬參加2018年5月份的車牌競拍,他為了預(yù)測最低成交價,根據(jù)競拍網(wǎng)站的數(shù)據(jù),統(tǒng)計了最近5個月參與競拍的人數(shù)(見下表):
![]()
(1)由收集數(shù)據(jù)的散點圖發(fā)現(xiàn),可用線性回歸模型擬合競拍人數(shù)y(萬人)與月份編號t之間的相關(guān)關(guān)系.請用最小二乘法求y關(guān)于t的線性回歸方程:
,并預(yù)測2018年5月份參與競拍的人數(shù).
(2)某市場調(diào)研機構(gòu)從擬參加2018年5月份車牌競拍人員中,隨機抽取了200人,對他們的擬報價價格進行了調(diào)查,得到如下頻數(shù)分布表和頻率分布直方圖:
![]()
![]()
(i)求
的值及這200位竟拍人員中報價大于5萬元的人數(shù);
(ii)若2018年5月份車牌配額數(shù)量為3000,假設(shè)競拍報價在各區(qū)間分布是均勻的,請你根據(jù)以上抽樣的數(shù)據(jù)信息,預(yù)測(需說明理由)競拍的最低成交價.
參考公式及數(shù)據(jù):①
,其中
;
②![]()
【答案】(1)2萬人;(2)(i)a=40,b=0.15,人數(shù)為60;(ii)6萬元.
【解析】
(1)根據(jù)公式計算出線性回歸方程,再利用它預(yù)測人數(shù).
(2)(i)先根據(jù)
上的頻率計算出
,再根據(jù)頻率之和為1計算出
,最后根據(jù)大于5萬元的頻率計算相應(yīng)的人數(shù);
(ii)根據(jù)(1)的結(jié)論可知5月共有20000人參與競拍,因此可以得到報價在最低價之上的人數(shù)的頻率,再根據(jù)頻率分布直方圖得到最低價.
(1)易知
,
,
,
,
則
關(guān)于
的線性回歸方程為
,
當(dāng)
時,
,即2018年5月份參與競拍的人數(shù)估計為2萬人.
(2)(i)由
解得
;
由頻率和為1,得
,解得
,
位競拍人員報價大于5萬元得人數(shù)為
人;
(ii)2018年5月份實際發(fā)放車牌數(shù)量為3000,根據(jù)競價規(guī)則,報價在最低成交價以上人數(shù)占總?cè)藬?shù)比例為
;又由頻率分布直方圖知競拍報價大于6萬元的頻率為
;
所以,根據(jù)統(tǒng)計思想(樣本估計總體)可預(yù)測2018年5月份競拍的最低成交價為
萬元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某重點中學(xué)100位學(xué)生在市統(tǒng)考中的理科綜合分?jǐn)?shù),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖.
![]()
(1)求直方圖中
的值;
(2)求理科綜合分?jǐn)?shù)的眾數(shù)和中位數(shù);
(3)在理科綜合分?jǐn)?shù)為
,
,
,
的四組學(xué)生中,用分層抽樣的方法抽取11名學(xué)生,則理科綜合分?jǐn)?shù)在
的學(xué)生中應(yīng)抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
為實常數(shù).
(1)若當(dāng)
時,
在區(qū)間
上的最大值為
,求
的值;
(2)對任意不同兩點
,
,設(shè)直線
的斜率為
,若
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限
(年)和所支出的年平均維修費用
(萬元)(即維修費用之和除以使用年限),有如下的統(tǒng)計資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖;
(2)求
關(guān)于
的線性回歸方程;
(3)估計使用年限為10年時所支出的年平均維修費用是多少?
參考公式: ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某體育公司對最近6個月內(nèi)的市場占有率進行了統(tǒng)計,結(jié)果如表:
![]()
(1)可用線性回歸模型擬合
與
之間的關(guān)系嗎?如果能,請求出
關(guān)于
的線性回歸方程,如果不能,請說明理由;
(2)公司決定再采購
,
兩款車擴大市場,
,
兩款車各100輛的資料如表:
![]()
平均每輛車每年可為公司帶來收入500元,不考慮采購成本之外的其他成本,假設(shè)每輛車的使用壽命都是整數(shù)年,用每輛車使用壽命的頻率作為概率,以每輛車產(chǎn)生利潤的期望值作為決策依據(jù),應(yīng)選擇采購哪款車型?
參考數(shù)據(jù):
,
,
,
.
參考公式:相關(guān)系數(shù)
;
回歸直線方程
,其中
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知
、
兩個城鎮(zhèn)相距20公里,設(shè)
是
中點,在
的中垂線上有一高鐵站
,
的距離為10公里.為方便居民出行,在線段
上任取一點
(點
與
、
不重合)建設(shè)交通樞紐,從高鐵站鋪設(shè)快速路到
處,再鋪設(shè)快速路分別到
、
兩處.因地質(zhì)條件等各種因素,其中快速路
造價為1.5百萬元/公里,快速路
造價為1百萬元/公里,快速路
造價為2百萬元/公里,設(shè)
,總造價為
(單位:百萬元).
![]()
(1)求
關(guān)于
的函數(shù)關(guān)系式,并指出函數(shù)的定義域;
(2)求總造價的最小值,并求出此時
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱臺
的上下底面分別是邊長為2和4的正方形,
= 4且
⊥底面
,點
為
的中點.
![]()
(Ⅰ)求證:
面
;
(Ⅱ)在
邊上找一點
,使
∥面
,
并求三棱錐
的體積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com