【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,
,點(diǎn)P為線段A1C上的動(dòng)點(diǎn)(包含線段端點(diǎn)),則下列結(jié)論正確的 . ①當(dāng)
時(shí),D1P∥平面BDC1;
②當(dāng)
時(shí),A1C⊥平面D1AP;
③當(dāng)∠APD1的最大值為90°;
④AP+PD1的最小值為
.![]()
【答案】①②
【解析】解:如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)AA1=1,則AD=1,AB=
,設(shè)
;(λ≥1) 則A(1,0,0),C(0,
,0),A1(1,0,1),D1(0,0,1),C1(0,
,1),B(1,
,0)
,
,
對(duì)于①,設(shè)平面DBC1的法向量為
由
可得
若D1P∥平面BDC1 , 則
,解得λ=3,故①正確.
對(duì)于②,若A1C⊥平面D1AP,則
,解得λ=5,故②正確;
對(duì)于③,
<0 (λ≥1)有解,故∠APD1可以大于900 . 所以③錯(cuò);
對(duì)于④,∵
=0時(shí),λ=2,此時(shí)AP+PD1=
,
當(dāng)λ>2時(shí),∠APD1為鈍角此時(shí)AP+PD1小于
,故④錯(cuò)
綜上,所以答案是:①②.![]()
【考點(diǎn)精析】通過(guò)靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系即可以解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
是不小于3的正整數(shù),集合
,對(duì)于集合
中任意兩個(gè)元素
,
.
定義1:
.
定義2:若
,則稱
,
互為相反元素,記作
,或
.
(Ⅰ)若
,
,
,試寫出
,
,以及
的值;
(Ⅱ)若
,證明:
;
(Ⅲ)設(shè)
是小于
的正奇數(shù),至少含有兩個(gè)元素的集合
,且對(duì)于集合
中任意兩個(gè)不相同的元素
,
,都有
,試求集合
中元素個(gè)數(shù)的所有可能值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】牛頓法求方程f(x)=0近似根原理如下:求函數(shù)y=f(x)在點(diǎn)(xn , f(xn))處的切線y=f′(xn)(x﹣xn)+f(xn),其與x軸交點(diǎn)橫坐標(biāo)xn+1=xn﹣
(n∈N*),則xn+1比xn更靠近f(x)=0的根,現(xiàn)已知f(x)=x2﹣3,求f(x)=0的一個(gè)根的程序框圖如圖所示,則輸出的結(jié)果為( ) ![]()
A.2
B.1.75
C.1.732
D.1.73
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
+
.
(1)求f(x)≥f(4)的解集;
(2)設(shè)函數(shù)g(x)=k(x﹣3),k∈R,若f(x)>g(x)對(duì)任意的x∈R都成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
,離心率
,它的長(zhǎng)軸長(zhǎng)等于圓x2+y2﹣2x+4y﹣3=0的直徑.
(1)求橢圓 C的方程;
(2)若過(guò)點(diǎn)
的直線l交橢圓C于A,B兩點(diǎn),是否存在定點(diǎn)Q,使得以AB為直徑的圓經(jīng)過(guò)這個(gè)定點(diǎn),若存在,求出定點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ﹣2cosθ﹣6sinθ+
=0,直線l的參數(shù)方程為
(t為參數(shù)).
(1)求曲線C的普通方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,3),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】體積為
的球有一個(gè)內(nèi)接正三棱錐P﹣ABC,PQ是球的直徑,∠APQ=60°,則三棱錐P﹣ABC的體積為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015
全國(guó)統(tǒng)考II)設(shè)函數(shù)f(x)=ln(1+|x|)-
,則使得f(x)
f(2x-1)成立的x的取值范圍是()
A.(
,1)
B.(-
,
)
(1,+
)
C.(-
,
)
D.(-
,-
)
(
,+
)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com